# NOT RUN {
## Example 1: empirical=worst case.
data.vec <- rep(c(0,1), l=10)
plot(data.vec)
bs.model <- binsegRcpp::binseg_normal(data.vec)
split.counts <- binsegRcpp::get_complexity(bs.model)
plot(split.counts)
## Example 2: empirical=best case.
data.vec <- 1:20
plot(data.vec)
bs.model <- binsegRcpp::binseg_normal(data.vec)
split.counts <- binsegRcpp::get_complexity(bs.model)
plot(split.counts)
## Example 3: empirical case between best/worst.
seg.mean.vec <- 1:5
data.mean.vec <- rep(seg.mean.vec, each=10)
set.seed(1)
data.vec <- rnorm(length(data.mean.vec), data.mean.vec, 0.2)
plot(data.vec)
bs.model <- binsegRcpp::binseg_normal(data.vec)
split.counts <- binsegRcpp::get_complexity(bs.model)
plot(split.counts)
if(require("ggplot2")){
ggplot()+
geom_line(aes(
segments, splits, color=case, size=case),
data=split.counts$iterations[case!="empirical"])+
geom_point(aes(
segments, splits, color=case),
data=split.counts$iterations[case=="empirical"])+
geom_text(aes(
x, y,
label=label,
color=case),
hjust=1,
data=split.counts$totals)+
scale_color_manual(
values=binsegRcpp::case.colors,
guide="none")+
scale_size_manual(
values=binsegRcpp::case.sizes,
guide="none")
}
# }
Run the code above in your browser using DataLab