library(spatstat)
# Prepare the dataset:
X <- trees_N4
x_left <- x_left_N4
x_right <- x_right_N4
y_bottom <- y_bottom_N4
y_top <- y_top_N4
z_beta <- list(refor = cov_refor, slope = cov_slope)
z_alpha <- list(tmi = cov_tmi, tdensity = cov_tdensity)
z_omega <- list(slope = cov_slope, reserv = cov_reserv)
# Determine the union of rectangles:
W <- owin(c(x_left[1], x_right[1]), c(y_bottom[1], y_top[1]))
if (length(x_left) >= 2) {
for (i in 2:length(x_left)) {
W2 <- owin(c(x_left[i], x_right[i]), c(y_bottom[i], y_top[i]))
W <- union.owin(W, W2)
}
}
# Dilated observation window:
W_dil <- dilation.owin(W, 100)
# Default parameters for prior distributions:
control <- list(NStep = 100, BurnIn = 20, SamplingFreq = 5)
# MCMC estimation:
Output <- estintp(X = X, control = control, x_left = x_left, x_right = x_right,
y_bottom = y_bottom, y_top = y_top, W_dil = W_dil, z_beta = z_beta,
z_alpha = z_alpha, z_omega = z_omega, verbose = FALSE)
# Access the raw outputs of the chain:
rawMCMCoutput(Output)
Run the code above in your browser using DataLab