Learn R Programming

biogeom (version 1.4.3)

DEPE: Calculation of the First-Order Derivative of the Explicit Preston Equation

Description

DEPE is used to calculate the first-order derivative of the explicit Preston equation at a given x-value.

Usage

DEPE(P, x, simpver = NULL)

Arguments

P

the parameters of the explicit Preston equation or one of its simplified versions.

x

the x-value used in the explicit Preston equation.

simpver

an optional argument to use the simplified version of the explicit Preston equation.

Author

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

Details

When simpver = NULL, the first-order derivative of the explicit Preston equation at a given x-value is selected: $$ f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x+ a^2\left(3\,c_{3}-2\,c_{1}\right)x^{2}-3\,a\,c_{2}x^3-4\,c_{3}\,x^{4}\right]}{a^4\sqrt{a^2-x^2}}, $$ where P has five parameters: \(a\), \(b\), \(c_{1}\), \(c_{2}\), and \(c_{3}\).

\(\quad\) When simpver = 1, the first-order derivative of the simplified version 1 is selected: $$ f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x- 2\,a^2\,c_{1}\,x^{2}-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}}, $$ where P has four parameters: \(a\), \(b\), \(c_{1}\), and \(c_{2}\).

\(\quad\) When simpver = 2, the first-order derivative of the simplified version 2 is selected: $$ f(x)=\frac{b\left[a^{4}\,c_{1}-a^{3}\,x- 2\,a^2\,c_{1}\,x^{2}\right]}{a^4\sqrt{a^2-x^2}}, $$ where P has three parameters: \(a\), \(b\), and \(c_{1}\).

\(\quad\) When simpver = 3, the first-order derivative of the simplified version 3 is selected: $$ f(x)=\frac{b\left[a^{3}\left(2\,c_{2}-1\right)x-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}}, $$ where P has three parameters: \(a\), \(b\), and \(c_{2}\).

References

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023) A simple way to calculate the volume and surface area of avian eggs. Annals of the New York Academy of Sciences 1524, 118\(-\)131. tools:::Rd_expr_doi("10.1111/nyas.15000")

See Also

EPE, fitEPE, SurfaceAreaEPE

Examples

Run this code
  Par3 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287)
  xx1  <- seq(-4.27, 4.27, by=0.001)
  f1   <- DEPE(P=Par3, x=xx1, simpver=NULL)
  f2   <- -DEPE(P=Par3, x=xx1, simpver=NULL)

  dev.new()
  plot(xx1, f1, type="l", col=4, cex.lab=1.5, cex.axis=1.5,
       xlim=c(-5, 5), ylim=c(-35, 35), xlab=expression(italic(x)), 
       ylab=expression(paste(italic(f), "(", italic(x), ")", sep="")))
  lines(xx1, f2, col=2)  

  graphics.off()

Run the code above in your browser using DataLab