50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


biogeom (version 1.4.3)

MBriereE: Modified Briere Equation

Description

MBriereE is used to calculate y values at given x values using the modified Brière equation or one of its simplified versions.

Usage

MBriereE(P, x, simpver = 1)

Value

The y values predicted by the modified Brière equation or one of its simplified versions.

Arguments

P

the parameters of the modified Brière equation or one of its simplified versions.

x

the given x values.

simpver

an optional argument to use the simplified version of the modified Brière equation.

Author

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

Details

When simpver = NULL, the modified Brière equation is selected: if x(xmin, xmax), y=a|x(xxmin)(xmaxx)1/m|δ; if x(xmin, xmax), y=0. Here, x and y represent the independent and dependent variables, respectively; and a, m, xmin, xmax, and δ are constants to be estimated, where xmin and xmax represents the lower and upper intersections between the curve and the x-axis. y is defined as 0 when x<xmin or x>xmax. There are five elements in P, representing the values of a, m, xmin, xmax, and δ, respectively.

When simpver = 1, the simplified version 1 is selected: if x(0, xmax), y=a|x2(xmaxx)1/m|δ; if x(0, xmax), y=0. There are four elements in P, representing the values of a, m, xmax, and δ, respectively.

When simpver = 2, the simplified version 2 is selected: if x(xmin, xmax), y=ax(xxmin)(xmaxx)1/m; if x(xmin, xmax), y=0. There are four elements in P representing the values of a, m, xmin, and xmax, respectively.

When simpver = 3, the simplified version 3 is selected: if x(0, xmax), y=ax2(xmaxx)1/m; if x(0, xmax), y=0. There are three elements in P representing the values of a, m, and xmax, respectively.

References

Brière, J.-F., Pracros, P, Le Roux, A.-Y., Pierre, J.-S. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229. tools:::Rd_expr_doi("10.1093/ee/28.1.22")

Cao, L., Shi, P., Li, L., Chen, G. (2019) A new flexible sigmoidal growth model. Symmetry 11, 204. tools:::Rd_expr_doi("10.3390/sym11020204")

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. Plants 11, 1769. tools:::Rd_expr_doi("10.3390/plants11131769")

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123134. tools:::Rd_expr_doi("10.1111/nyas.14862")

See Also

areaovate, curveovate, fitovate, fitsigmoid, MbetaE, MLRFE, MPerformanceE, sigmoid

Examples

Run this code
x2   <- seq(-5, 15, len=2000)
Par2 <- c(0.01, 3, 0, 10, 1)
y2   <- MBriereE(P=Par2, x=x2, simpver=NULL)

dev.new()
plot( x2, y2, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic(x)), ylab=expression(italic(y)) )

graphics.off()

Run the code above in your browser using DataLab