Learn R Programming

biogeom (version 1.4.3)

MPerformanceE: Modified Performance Equation

Description

MPerformanceE is used to calculate \(y\) values at given \(x\) values using the modified performance equation or one of its simplified versions.

Usage

MPerformanceE(P, x, simpver = 1)

Value

The \(y\) values predicted by the modified performance equation or one of its simplified versions.

Arguments

P

the parameters of the modified performance equation or one of its simplified versions.

x

the given \(x\) values.

simpver

an optional argument to use the simplified version of the modified performance equation.

Author

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

Details

When simpver = NULL, the modified performance equation is selected: $$\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};$$ $$\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ Here, \(x\) and \(y\) represent the independent and dependent variables, respectively; and \(c\), \(K_{1}\), \(K_{2}\), \(x_{\mathrm{min}}\), \(x_{\mathrm{max}}\), \(a\), and \(b\) are constants to be estimated, where \(x_{\mathrm{min}}\) and \(x_{\mathrm{max}}\) represents the lower and upper intersections between the curve and the \(x\)-axis. \(y\) is defined as 0 when \(x < x_{\mathrm{min}}\) or \(x > x_{\mathrm{max}}\). There are seven elements in P, representing the values of \(c\), \(K_{1}\), \(K_{2}\), \(x_{\mathrm{min}}\), \(x_{\mathrm{max}}\), \(a\), and \(b\), respectively.

\(\quad\) When simpver = 1, the simplified version 1 is selected: $$\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};$$ $$\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are six elements in P, representing the values of \(c\), \(K_{1}\), \(K_{2}\), \(x_{\mathrm{max}}\), \(a\), and \(b\) respectively.

\(\quad\) When simpver = 2, the simplified version 2 is selected: $$\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);$$ $$\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are five elements in P representing the values of \(c\), \(K_{1}\), \(K_{2}\), \(x_{\mathrm{min}}\), and \(x_{\mathrm{max}}\), respectively.

\(\quad\) When simpver = 3, the simplified version 3 is selected: $$\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);$$ $$\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are four elements in P representing the values of \(c\), \(K_{1}\), \(K_{2}\), and \(x_{\mathrm{max}}\), respectively.

\(\quad\) When simpver = 4, the simplified version 4 is selected: $$\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},$$ $$y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right)^{b};$$ $$\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},$$ $$y = 0.$$ There are five elements in P, representing the values of \(c\), \(K_{1}\), \(K_{2}\), \(a\), and \(b\), respectively.

\(\quad\) When simpver = 5, the simplified version 5 is selected: $$\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},$$ $$y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right);$$ $$\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},$$ $$y = 0.$$ There are three elements in P, representing the values of \(c\), \(K_{1}\), and \(K_{2}\), respectively.

References

Huey, R.B., Stevenson, R.D. (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist 19, 357\(-\)366. tools:::Rd_expr_doi("10.1093/icb/19.1.357")

Lian, M., Shi, P., Zhang, L., Yao, W., Gielis, J., Niklas, K.J. (2023) A generalized performance equation and its application in measuring the Gini index of leaf size inequality. Trees \(-\) Structure and Function 37, 1555\(-\)1565. tools:::Rd_expr_doi("10.1007/s00468-023-02448-8")

Shi, P., Ge, F., Sun, Y., Chen, C. (2011) A simple model for describing the effect of temperature on insect developmental rate. Journal of Asia-Pacific Entomology 14, 15\(-\)20. tools:::Rd_expr_doi("10.1016/j.aspen.2010.11.008")

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123\(-\)134. tools:::Rd_expr_doi("10.1111/nyas.14862")

See Also

areaovate, curveovate, fitLorenz, fitovate, fitsigmoid, MbetaE, MBriereE, MLRFE, sigmoid

Examples

Run this code
x4   <- seq(0, 40, len=2000)
Par4 <- c(0.117, 0.090, 0.255, 5, 35, 1, 1)
y4   <- MPerformanceE(P=Par4, x=x4, simpver=NULL)

dev.new()
plot( x4, y4, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic(x)), ylab=expression(italic(y)) )

graphics.off()

Run the code above in your browser using DataLab