VolumeSGE
is used to calculate the volume of an egg that follows the simplified Gielis equation.
VolumeSGE(P, subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)
the parameters of the simplified Gielis equation, including \(a\), \(n_{1}\), and \(n_{2}\).
please see the arguments for the integrate
function in package stats.
please see the arguments for the integrate
function in package stats.
please see the arguments for the integrate
function in package stats.
please see the arguments for the integrate
function in package stats.
please see the arguments for the integrate
function in package stats.
please see the arguments for the integrate
function in package stats.
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
The formula of the volume (\(V\)) of an egg based on the simplified Gielis equation is: $$V\left(\varphi\right)=\frac{2}{3}\,\pi\int_{0}^{\pi}\sin{\left(\varphi\right)}\ r^3\left(\varphi\right)\,d\varphi,$$
where the polar raidus (\(r\)) is the function of the polar angle (\(\varphi\)):
$$r\left(\varphi\right) = a\left(\left|\mathrm{cos}\left(\frac{m}{4}\varphi\right)\right|^{n_{2}}+ \left|\mathrm{sin}\left(\frac{m}{4}\varphi\right)\right|^{n_{2}}\right)^{-\frac{1}{n_{1}}},$$
namely the simplified Gielis equation (i.e., GE
) with arguments
simpver = 1
and m = 1
.
Chen, Z. (2012) Volume and area of revolution under polar coordinate system. Studies in College Mathematics 15(6), 9\(-\)11.
Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023) A simple way to calculate the volume and surface area of avian eggs. Annals of the New York Academy of Sciences 1524, 118\(-\)131. tools:::Rd_expr_doi("10.1111/nyas.15000")
fitGE
, GE
, SurfaceAreaSGE
Par7 <- c(1.124, 14.86, 49.43)
VolumeSGE(P = Par7)
Run the code above in your browser using DataLab