Learn R Programming

biogeom (version 1.4.4)

MBriereE: Modified Briere Equation

Description

MBriereE is used to calculate \(y\) values at given \(x\) values using the modified Brière equation or one of its simplified versions.

Usage

MBriereE(P, x, simpver = 1)

Value

The \(y\) values predicted by the modified Brière equation or one of its simplified versions.

Arguments

P

the parameters of the modified Brière equation or one of its simplified versions.

x

the given \(x\) values.

simpver

an optional argument to use the simplified version of the modified Brière equation.

Author

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

Details

When simpver = NULL, the modified Brière equation is selected: $$\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = a\left|x(x-x_{\mathrm{min}})(x_{\mathrm{max}}-x)^{1/m}\right|^{\delta};$$ $$\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ Here, \(x\) and \(y\) represent the independent and dependent variables, respectively; and \(a\), \(m\), \(x_{\mathrm{min}}\), \(x_{\mathrm{max}}\), and \(\delta\) are constants to be estimated, where \(x_{\mathrm{min}}\) and \(x_{\mathrm{max}}\) represents the lower and upper intersections between the curve and the \(x\)-axis. \(y\) is defined as 0 when \(x < x_{\mathrm{min}}\) or \(x > x_{\mathrm{max}}\). There are five elements in P, representing the values of \(a\), \(m\), \(x_{\mathrm{min}}\), \(x_{\mathrm{max}}\), and \(\delta\), respectively.

\(\quad\) When simpver = 1, the simplified version 1 is selected: $$\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = a\left|x^{2}(x_{\mathrm{max}}-x)^{1/m}\right|^{\delta};$$ $$\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are four elements in P, representing the values of \(a\), \(m\), \(x_{\mathrm{max}}\), and \(\delta\), respectively.

\(\quad\) When simpver = 2, the simplified version 2 is selected: $$\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = ax(x-x_{\mathrm{min}})(x_{\mathrm{max}}-x)^{1/m};$$ $$\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are four elements in P representing the values of \(a\), \(m\), \(x_{\mathrm{min}}\), and \(x_{\mathrm{max}}\), respectively.

\(\quad\) When simpver = 3, the simplified version 3 is selected: $$\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = ax^{2}(x_{\mathrm{max}}-x)^{1/m};$$ $$\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},$$ $$y = 0.$$ There are three elements in P representing the values of \(a\), \(m\), and \(x_{\mathrm{max}}\), respectively.

References

Brière, J.-F., Pracros, P, Le Roux, A.-Y., Pierre, J.-S. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 22\(-\)29. tools:::Rd_expr_doi("10.1093/ee/28.1.22")

Cao, L., Shi, P., Li, L., Chen, G. (2019) A new flexible sigmoidal growth model. Symmetry 11, 204. tools:::Rd_expr_doi("10.3390/sym11020204")

Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. Plants 11, 1769. tools:::Rd_expr_doi("10.3390/plants11131769")

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123\(-\)134. tools:::Rd_expr_doi("10.1111/nyas.14862")

See Also

areaovate, curveovate, fitovate, fitsigmoid, MbetaE, MLRFE, MPerformanceE, sigmoid

Examples

Run this code
x2   <- seq(-5, 15, len=2000)
Par2 <- c(0.01, 3, 0, 10, 1)
y2   <- MBriereE(P=Par2, x=x2, simpver=NULL)

dev.new()
plot( x2, y2, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic(x)), ylab=expression(italic(y)) )

graphics.off()

Run the code above in your browser using DataLab