# 0. Load data & Selecting Data
# species occurrences
species_occ <- read.csv(system.file("external/species/species_occ.csv",package="biomod2"))
# we consider only presences of MyocastorCoypus species
myRespName <- 'MyocastorCoypus'
myRespCoord <- species_occ[,c('x','y')]
myResp <- as.numeric(species_occ[,myRespName])
# Environemental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = raster::stack(system.file("external/climat/current/bio3.grd",package="biomod2"),
system.file("external/climat/current/bio4.grd",package="biomod2"),
system.file("external/climat/current/bio7.grd",package="biomod2"),
system.file("external/climat/current/bio11.grd",package="biomod2"),
system.file("external/climat/current/bio12.grd",package="biomod2"))
# Keep only points where we have info
myExpl <- extract(myExpl, myRespCoord)
# 1. Formating Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespCoord,
resp.name = myRespName,
PA.nb.rep = 1,
PA.nb.absences = 100,
PA.strategy = 'random')
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Doing Modelisation
myBiomomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('SRE','RF'),
models.options = myBiomodOption,
NbRunEval=1,
DataSplit=80,
Yweights=NULL,
VarImport=3,
models.eval.meth = c('TSS'),
SaveObj = TRUE )
# 4 Projection on current environemental conditions
myBiomomodProjection <- BIOMOD_Projection(modeling.output = myBiomomodModelOut,
new.env = data.frame(myExpl),
proj.name = 'current',
selected.models = 'all')
# 5. Get projection under data.frame format
myProjDF <- getProjection(myBiomomodProjection, as.data.frame=TRUE)
class(myProjDF)
dim(myProjDF)
dimnames(myProjDF)
# 6. Transform data.frame into array
myProjArray <- DF_to_ARRAY(myProjDF)
class(myProjArray)
dim(myProjArray)
dimnames(myProjArray)
Run the code above in your browser using DataLab