# 0. Load data & Selecting Data
# species occurrences
species_occ <- read.csv(system.file("external/species/species_occ.csv",package="biomod2"))
# we consider only presences of MyocastorCoypus species
myRespName <- 'MyocastorCoypus'
myRespCoord <- species_occ[which(!is.na(species_occ[,myRespName])),c('x','y')]
myResp <- as.numeric(na.omit(species_occ[,myRespName]))
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = raster::stack(system.file("external/climat/current/bio3.grd",package="biomod2"),
system.file("external/climat/current/bio4.grd",package="biomod2"),
system.file("external/climat/current/bio7.grd",package="biomod2"),
system.file("external/climat/current/bio11.grd",package="biomod2"),
system.file("external/climat/current/bio12.grd",package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespCoord,
resp.name = myRespName,
PA.nb.rep = 1,
PA.nb.absences = 200,
PA.strategy = 'random')
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Running the models
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('SRE','RF'),
models.options = myBiomodOption,
NbRunEval=2,
DataSplit=80,
Yweights=NULL,
VarImport=0,
models.eval.meth = c('TSS'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = FALSE)
# 4. Creating the ensemble models
myBiomodEM <- BIOMOD_EnsembleModeling( modeling.output = myBiomodModelOut,
chosen.models = grep('_RF', getModelsBuiltModels(myBiomodModelOut), value=TRUE),
em.by = 'algo',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
prob.mean = FALSE,
prob.cv = FALSE,
prob.ci = FALSE,
prob.ci.alpha = 0.05,
prob.median = FALSE,
committee.averaging = FALSE,
prob.mean.weight = TRUE,
prob.mean.weight.decay = 'proportional' )
# 5. Individual models projections on current environmental conditions
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
new.env = myExpl,
proj.name = 'current',
selected.models = grep('_RF', getModelsBuiltModels(myBiomodModelOut), value=TRUE),
compress = 'NULL',
build.clamping.mask = FALSE)
# 4. Creating the ensemble projections
BIOMOD_EnsembleForecasting( projection.output = myBiomodProjection,
EM.output = myBiomodEM)
Run the code above in your browser using DataLab