This internal biomod2 function allows the user to compute all single
species distribution models (asked by the BIOMOD_Modeling function).
bm_RunModelsLoop(
bm.format,
modeling.id,
model,
bm.options,
metric.eval,
var.import,
save.output = TRUE,
scale.models = TRUE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)bm_RunModel(
model,
Data,
modeling.id = "",
bm.options,
calib.lines,
weights,
nam,
dir.name = ".",
xy = NULL,
eval.data = NULL,
eval.xy = NULL,
metric.eval = c("ROC", "TSS", "KAPPA"),
var.import = 0,
save.output = FALSE,
scale.models = TRUE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)
A list containing for each model a list containing the following elements :
model : the name of correctly computed model
calib.failure : the name of incorrectly computed model
pred : the prediction outputs for calibration data
pred.eval : the prediction outputs for validation data
evaluation : the evaluation outputs returned by the
bm_FindOptimStat function
var.import : the mean of variables importance returned by the
bm_VariablesImportance function
a BIOMOD.formated.data or BIOMOD.formated.data.PA
object returned by the BIOMOD_FormatingData function
a character corresponding to the name (ID) of the simulation set
(a random number by default)
a character corresponding to the model name to be computed, must be either
GLM, GBM, GAM, CTA, ANN, SRE, FDA,
MARS, RF, MAXENT.Phillips, MAXENT.Phillips.2
a BIOMOD.models.options object returned by the
BIOMOD_ModelingOptions function
a vector containing evaluation metric names to be used, must
be among ROC, TSS, KAPPA, ACCURACY, BIAS, POD,
FAR, POFD, SR, CSI, ETS, HK, HSS, OR,
ORSS
(optional, default NULL)
An integer corresponding to the number of permutations to be done for each variable to
estimate variable importance
(optional, default TRUE)
A logical value defining whether all outputs should be saved on hard drive or not
(! strongly recommended !)
(optional, default FALSE)
A logical value defining whether all models predictions should be scaled with a
binomial GLM or not
(optional, default 1)
An integer value corresponding to the number of computing resources to be used to
parallelize the single models computation
(optional, default NULL)
An integer value corresponding to the new seed value to be set
(optional, default TRUE)
A logical value defining whether the progress bar is to be rendered or not
a data.frame containing data.species and data.env.var slots
of bm.format parameter
a data.frame containing data.split.table slot of
bm.format parameter, or an extraction of data.species slot (for a specific PA
dataset extracted from PA.table slot)
a vector of numeric values corresponding to observation weights
(one per observation)
a character corresponding to the model to be run (name + run.id)
(optional, default .)
A character corresponding to the modeling folder
a data.frame containing coord slot of bm.format
parameter (for a specific PA dataset extracted from PA.table slot of bm.format
parameter)
a data.frame containing eval.data.species and
eval.data.env.var slots of bm.format parameter
a data.frame containing eval.coord slot of bm.format
parameter
Damien Georges
rpart, prune, gbm,
stepAIC, nnet, earth,
fda, mars, maxnet,
randomForest,
BIOMOD_ModelingOptions, BIOMOD_Modeling,
bm_MakeFormula, bm_SampleFactorLevels,
bm_FindOptimStat, bm_VariablesImportance
Other Secundary functions:
bm_BinaryTransformation(),
bm_CVnnet(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_PlotEvalBoxplot(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_VariablesImportance()