## Load real data
myFile <- system.file('external/species/mammals_table.csv', package = 'biomod2')
DataSpecies <- read.csv(myFile, row.names = 1)
myResp.r <- as.numeric(DataSpecies[, 'GuloGulo'])
myFiles <- paste0('external/bioclim/current/bio', c(3, 4, 7, 11, 12), '.grd')
myExpl.r <- raster::stack(system.file(myFiles, package = 'biomod2'))
myRespXY <- DataSpecies[which(myResp.r == 1), c('X_WGS84', 'Y_WGS84')]
myResp.v <- raster::reclassify(raster::subset(myExpl.r, 1, drop = TRUE), c(-Inf, Inf, 0))
myResp.v[raster::cellFromXY(myResp.v, myRespXY)] <- 1
## Compute SRE for several quantile values
sre.100 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0)
sre.095 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0.025)
sre.090 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0.05)
## Visualize results
res <- raster::stack(myResp.v, sre.100, sre.095, sre.090)
names(res) <- c("Original distribution", "Full data calibration"
, "Over 95 percent", "Over 90 percent")
plot(res, zlim = c(0, 1))
Run the code above in your browser using DataLab