This internal biomod2 function allows the user to compute cross-validation
for neural networks in ANN model (see nnet
and
BIOMOD_Modeling
).
bm_CVnnet(
Input,
Target,
size = c(2, 4, 6, 8),
decay = c(0.001, 0.01, 0.05, 0.1),
maxit = 200,
nbCV = 5,
weights = NULL,
seedval = 555
)
A data.frame
containing the following elements :
Size
: the size
Decay
: the decay value
AUC
: the corresponding Area Under Curve
complete dataset with explanatory variables
calibration dataset with observed presence / absence
(see parameter ANN$size
in BIOMOD_ModelingOptions
)
(see parameter ANN$decay
in BIOMOD_ModelingOptions
)
(see parameter ANN$maxit
in BIOMOD_ModelingOptions
)
(see parameter ANN$nbCV
in BIOMOD_ModelingOptions
)
a vector
of numeric
values corresponding to weights over
calibration lines
an integer
value corresponding to the new seed value to be set
Damien Georges
nnet
, auc
, roc
,
BIOMOD_ModelingOptions
, BIOMOD_Modeling
,
bm_SampleBinaryVector
, bm_RunModelsLoop
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_VariablesImportance()