Learn R Programming

biomvRCNS (version 1.12.0)

biomvRGviz: Plot segmentation result using Gviz

Description

This function could be called to plot segmentation output, together with the input signal and optional annotation. By default resulting image will be printed to file. The plot method for class biomvRCNS-class also calls this method. See the vignette for a more complete example.

Usage

biomvRGviz(exprgr, gmgr = NULL, prange = NULL, regionID = NULL, seggr = NULL, plotstrand = "+", eps = TRUE, tofile = TRUE, ...)

Arguments

exprgr
a GRanges object with one numeric column for the segmentation input signal in its meta DataFrame
gmgr
an optional GRanges object for the annotation, which must have one column named 'TYPE' in its meta DataFrame
prange
an optional vector defining the scope of the plot, the first 3 elements must be formatted as c('seqname', 'start_position', 'end_position')
regionID
a character for the name of the plotted region or gene name or other identifier, will be used in the title of the plot and the output file name
seggr
a GRanges object for the segmentation output, which must have one column named 'STATE' in its meta DataFrame
plotstrand
select which strand to plot, possible values are '+', '-', '*'
eps
whether to output EPS file using postscript, if FALSE then PDF files for each sequence will be generated to the current working folder.
tofile
whether to output graphics file, if FALSE then will plot on the active device and have the trackList returned.
...
other arguments for plot, like main, ylab, cex, or height and width for graphic device.

Value

Plot graph on the active device or output to EPS/PDF file.

Details

See the vignette for more details and examples.

Examples

Run this code
	data(coriell)
	x<-coriell[coriell[,2]==1,]
	xgr<-GRanges(seqnames=paste('chr', x[,2], sep=''), IRanges(start=x[,3], width=1, names=x[,1]))
	values(xgr)<-DataFrame(x[,4:5], row.names=NULL)
	xgr<-xgr[order(xgr)]

	J<-2; maxk<-50
	# a uniform inital sojourn, not utilizing positional information
	soj<-list(J=J, maxk=maxk, type='gamma', d=cbind(dunif(1:maxk, 1, maxk), dunif(1:maxk, 1, maxk)))
	soj$D <- sapply(1:J, function(j) rev(cumsum(rev(soj$d[1:maxk,j]))))
	sample<-colnames(coriell)[5]
	runout<-hsmmRun(matrix(values(xgr)[,sample]), sample, xgr, soj, emis=list(type='norm', mu=quantile(unlist(x[,sample]), c(0.25, 0.75)), var=rep(var(unlist(x[,sample])), J)))
	biomvRGviz(exprgr=xgr, seggr=runout$res, tofile=FALSE) 
	

Run the code above in your browser using DataLab