Learn R Programming

biomvRCNS (version 1.12.0)

regionSegCost: Regional segmentation cost matrix

Description

To calculate regional cost matrix for the initial stage and second merging stage of the segmentation model.

Usage

regionSegCost(x, maxk = NULL, segs = NULL, family = NULL, alpha = NULL, useSum = TRUE, useMC = FALSE, comVar = TRUE)

Arguments

x
The input data matrix or vector
maxk
Maximum number of index to search forward
segs
Starting indices (excluding 1) for the candidate segments, for the second stage model, maxk will be overridden with length(segs)+1.
family
which exponential family the data belongs to, possible values are 'norm', 'pois' and 'nbinom'
alpha
alpha matrix for negative binomial cost calculation, estimated from regionSegAlphaNB
useSum
TRUE if using grand sum across sample / x columns, like in the tilingArray solution
useMC
TRUE if mclapply should be used to speed up
comVar
TRUE if assuming common variance across samples (x columns)

Value

Matrix with maxk rows and nrow(x) columns, or a length(segs)+1 square matrix for the second stage model.

Details

Preparing the cost matrix for the follow-up segmentation. Using residual sum of squares for 'norm' data, and negative log-likelihood for 'pois' and 'nbinom' data. Extension of the costMatrix function in tilingArray.

References

Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics, 863-867.

Picard,F. et al. (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics, 6, 27. Huber,W. et al. (2006) Transcript mapping with high density oligonucleotide tiling arrays. Bioinformatics, 22, 1963-1970. .

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332

See Also

regionSegAlphaNB

Examples

Run this code
	x<-matrix(rnorm(120), ncol=3)
	Ca<-regionSegCost(x, maxk=20, family='norm')
	dim(Ca) # [1] 20 40
	Cb<-regionSegCost(x, segs=as.integer(c(3, 6, 12, 30)), family='norm')
	dim(Cb) # [1] 5 5

Run the code above in your browser using DataLab