comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)
comnet <- mat_to_net(comat)
dissim <- dissimilarity(comat, metric = "all")
# User-defined number of clusters
tree1 <- hclu_hierarclust(dissim,
n_clust = 2:15,
index = "Simpson")
tree1
a <- partition_metrics(tree1,
dissimilarity = dissim,
net = comnet,
species_col = "Node2",
site_col = "Node1",
eval_metric = c("tot_endemism",
"avg_endemism",
"pc_distance",
"anosim"))
find_optimal_n(a)
find_optimal_n(a, criterion = "increasing_step")
find_optimal_n(a, criterion = "decreasing_step")
find_optimal_n(a, criterion = "decreasing_step",
step_levels = 3)
find_optimal_n(a, criterion = "decreasing_step",
step_quantile = .9)
find_optimal_n(a, criterion = "decreasing_step",
step_levels = 3)
find_optimal_n(a, criterion = "decreasing_step",
step_levels = 3)
find_optimal_n(a, criterion = "breakpoints")
Run the code above in your browser using DataLab