Learn R Programming

bipartite (version 2.05)

czvalues: Computes c and z for network modules

Description

Function to compute c and z values of module members according to Guimerà & Amaral (2005), with formulae taken from Olesen et al. (2007)

Usage

czvalues(moduleWebObject, weighted=FALSE, level="higher")

Arguments

moduleWebObject
A moduleWeb-class object as created by computeModules.
weighted
logical; if TRUE computes c and z from quantitative (=weighted) data; in this case, it will compute strength, rather than degrees for each species.
level
"higher" or "lower" trophic level to compute c and z values for; defaults to "higher"

Value

  • A list with two vectors, c and z, for all species of the selected trophic level.

encoding

UTF-8

Details

c = 1 - sum( (k.it/k.i)^2) # among-module connectivity = participation coefficient P in Guimerà & Amaral

z = (k.is - ks.bar) / SD.ks # within-module degree

k.is = number of links of i to other species in its own module s; ks.bar = average k.is of all species in module s; SD.ks = standard deviation of k.is of all species in module s; k.it = number of links of species i to module t; k.i = degree of species i

Olesen et al. (2006) give critical c and z values of 0.62 and 2.6, respectively. Species exceeding these values are deemed connectors or hubs of a network. The justification of these thresholds remains unclear to me. They may also not apply for the quantitative version.

References

Guimerà, R. and Amaral, L.A.N. (2005) Functional cartography of complex metabolic networks. Nature 433, 895--900.

Olesen, J.M., Bascompte, J., Dupont, Y.L. and Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences of the USA 104, 19891-19896.

Examples

Run this code
data(memmott1999)
set.seed(2)
mod <- computeModules(memmott1999, steps=1E4)
cz <- czvalues(mod)
plot(cz[[1]], cz[[2]], pch=16, xlab="c", ylab="z", cex=0.8, xlim=c(0,1), las=1)
abline(v=0.62) # threshold of Olesen et al. 2007
abline(h=2.5)   # dito
text(cz[[1]], cz[[2]], names(cz[[1]]), pos=4, cex=0.7)

Run the code above in your browser using DataLab