Learn R Programming

bipl5

The goal of bipl5 is to provide a modern take on PCA biplots with calibrated axes. The biplots are rendered in HTML via the plotly graphing library, upon which custom JavaScript code is appended to make the plot reactive. The traditional biplot view is also extended through an algorithm that translates the axes out of the data centroid, decluttering the view. In addition to the former, inter-class kernel densities are superimposed on the axes to give an indication of the data spread across the variables.

Installation

You can install the latest version of bipl5 from CRAN with:

install.packages("bipl5")
library(bipl5)
#> 
#> Welcome to bipl5!
#> 
#> Run help(bipl5) for more information on the package scope.

Example: Traditional PCA biplot

This is a basic example of constructing a traditional PCA biplot with calibrated axes and vector loadings. In the literature, a square is often drawn around the biplot purely for aesthetic reasons. This approached was modified by constructing a circle which bounds the plot:

PCAbiplot(iris[,-5],group=iris[,5])
#> Call:
#> PCAbiplot(x = iris[, -5], group = iris[, 5])
#> 
#> Data Breakdown:
#>   n: 150 
#>   p: 4
#> 
#> Grouping variable:            
#>              Count
#>   setosa        50
#>   versicolor    50
#>   virginica     50
#> 
#> Fit Statistics:
#> 
#> 
#> Table: Adequacy of the Axes
#> 
#> |         | Sepal.Length| Sepal.Width| Petal.Length| Petal.Width|
#> |:--------|------------:|-----------:|------------:|-----------:|
#> |PC: 1+2: |       0.4140|      0.9250|       0.3375|      0.3235|
#> |PC: 1+3: |       0.7893|      0.1323|       0.3571|      0.7214|
#> |PC: 2+3: |       0.6602|      0.9122|       0.0208|      0.4068|
#> 
#> 
#> Table: Axis Predictivity
#> 
#> |         | Sepal.Length| Sepal.Width| Petal.Length| Petal.Width|
#> |:--------|------------:|-----------:|------------:|-----------:|
#> |PC: 1+2: |       0.9226|      0.9909|       0.9837|      0.9353|
#> |PC: 1+3: |       0.8684|      0.2205|       0.9861|      0.9902|
#> |PC: 2+3: |       0.2062|      0.7880|       0.0035|      0.0631|
#> 
#> Quality of display = 95.81% = 72.96% (PC1) + 22.85% (PC2)

On the rendered HTML file there are reactive events embedded on the plot, such as changing the principal components used for the scaffolding. More detailed information can be obtained by reading the help documentation

?PCAbiplot

Example: Automated Orthogonal Parallel Translation of the axes

The cluttering in the centroid of the biplot can be relieved by the Orthogonal Parallel Translation of the axes out of the data centroid in such a way that the correlation structure among variables is retained. This is done with the following:

x<-PCAbiplot(iris[,-5],group=iris[,5])
x |> TDAbiplot()
#> [1] 1.008636
#> Call:
#> PCAbiplot(x = iris[, -5], group = iris[, 5]) |> 
#>  TDAbiplot.bipl5(x = x)
#> 
#> Data Breakdown:
#>   n: 150 
#>   p: 4
#> 
#> Grouping variable:            
#>              Count
#>   setosa        50
#>   versicolor    50
#>   virginica     50
#> 
#> Fit Statistics:
#> 
#> 
#> Table: Adequacy of the Axes
#> 
#> |         | Sepal.Length| Sepal.Width| Petal.Length| Petal.Width|
#> |:--------|------------:|-----------:|------------:|-----------:|
#> |PC: 1+2: |       0.4140|      0.9250|       0.3375|      0.3235|
#> |PC: 1+3: |       0.7893|      0.1323|       0.3571|      0.7214|
#> |PC: 2+3: |       0.6602|      0.9122|       0.0208|      0.4068|
#> 
#> 
#> Table: Axis Predictivity
#> 
#> |         | Sepal.Length| Sepal.Width| Petal.Length| Petal.Width|
#> |:--------|------------:|-----------:|------------:|-----------:|
#> |PC: 1+2: |       0.9226|      0.9909|       0.9837|      0.9353|
#> |PC: 1+3: |       0.8684|      0.2205|       0.9861|      0.9902|
#> |PC: 2+3: |       0.2062|      0.7880|       0.0035|      0.0631|
#> 
#> Quality of display = 95.81% = 72.96% (PC1) + 22.85% (PC2)

Copy Link

Version

Install

install.packages('bipl5')

Monthly Downloads

179

Version

1.0.2

License

MIT + file LICENSE

Maintainer

Ruan Buys

Last Published

November 2nd, 2023

Functions in bipl5 (1.0.2)

predict.bipl5

Method to obtain the predicted or fitted values of the biplot
bipl5

bipl5: Constructing Reactive Calibrated Axes Biplots
FMbiplot

Determine various measures of fit for the PCA biplot
TDAbiplot

Construct PCA biplots with translated calibrated density axes
Symbol_List

Retrieve all valid plotting symbols for plotly library
colorpal

bpl5 default color scales
print.bipl5

Default print method for an object of class bipl5
plot.bipl5

Plot an object of class bipl5
PCAbiplot

Construct a rank-2 PCA biplot