# NOT RUN {
x <- as.integer64(c(NA, 0:9), 32)
table <- as.integer64(c(1:9, NA))
match.integer64(x, table)
"%in%.integer64"(x, table)
x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE))
table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table))))
stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table)))
# }
# NOT RUN {
message("check when reverse hash-lookup beats standard hash-lookup")
e <- 4:24
timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e))
for (iy in seq_along(e))
for (ix in 1:iy){
nx <- 2^e[ix]
ny <- 2^e[iy]
x <- as.integer64(sample(ny, nx, FALSE))
y <- as.integer64(sample(ny, ny, FALSE))
#hashfun(x, bits=as.integer(5))
timx[ix,iy] <- repeat.time({
hx <- hashmap(x)
py <- hashrev(hx, y)
})[3]
timy[ix,iy] <- repeat.time({
hy <- hashmap(y)
px <- hashpos(hy, x)
})[3]
#identical(px, py)
print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="")
}
message("explore best low-level method given size of x and table")
B1 <- 1:27
B2 <- 1:27
tim <- array(NA, dim=c(length(B1), length(B2), 5)
, dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3")))
for (i1 in B1)
for (i2 in B2)
{
b1 <- B1[i1]
b2 <- B1[i2]
n1 <- 2^b1
n2 <- 2^b2
x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA))
x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA))
tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3]
tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3]
s <- clone(x2); o <- seq_along(s); ramsortorder(s, o)
tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3]
tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3]
tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3]
rm(s,o)
print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti)))
}
# }
Run the code above in your browser using DataLab