# NOT RUN {
library(phytools)
phy <- pbtree(n = 50)
Q <- cbind(c(-.002, .002), c(.002, -.002))
phy <- sim.history(phy, Q = Q)
# MBM and VOU
jive_phy <- sim_jive(phy = phy, map = phy$maps)
# MWN + sigma and VOU + theta + root + alpha
jive_phy <- sim_jive(phy = phy, map = phy$maps,
models = list(mean= c("WN", "sigma"), logvar = c("OU")),
pars = list(mean = c(root = 0, sigma_sq1 = 0.1, sigma_sq2 = 0.5),
logvar = c(root = 10, theta1 = 5, theta2 = 10,
sigma_sq = 0.1, alpha1 = 0.2, alpha2 = 0.8))
)
# With a different model of intraspecific variation:
unif.f <- function(n, pars){
runif(n, pars[1] - exp(pars[2])/2, pars[1] + exp(pars[2])/2)
}
unif_phy <- sim_jive(phy = phy, map = phy$maps, models = list(mid=c("BM"), logrange=c("OU")),
pars = list(mid = c(root = 0, sigma_sq = 0.1),
logrange = c(root = 2, theta = 1, sigma_sq = 0.1, alpha = 1)),
var.f = unif.f)
# }
Run the code above in your browser using DataLab