# NOT RUN {
### To calculate the multivariate location vector and scale matrix:
samp.data <- t(mvrnorm(30,mu=c(0,0),Sigma=matrix(c(1,.75,.75,1),ncol=2)))
samp.bw <- biwt.est(samp.data)
samp.bw
samp.bw.var1 <- samp.bw$biwt.sig[1,1]
samp.bw.var2 <- samp.bw$biwt.sig[2,2]
samp.bw.cov <- samp.bw$biwt.sig[1,2]
samp.bw.cor <- samp.bw$biwt.sig[1,2] /
sqrt(samp.bw$biwt.sig[1,1]*samp.bw$biwt.sig[2,2])
samp.bw.cor
### To calculate the correlation(s):
samp.data <- t(mvrnorm(30,mu=c(0,0,0),
Sigma=matrix(c(1,.75,-.75,.75,1,-.75,-.75,-.75,1),ncol=3)))
# To compute the 3 pairwise correlations from the sample data:
samp.bw.cor <- biwt.cor(samp.data, output="vector")
samp.bw.cor
# To compute the 3 pairwise correlations in matrix form:
samp.bw.cor.mat <- biwt.cor(samp.data)
samp.bw.cor.mat
# To compute the 3 pairwise distances in matrix form:
samp.bw.dist.mat <- biwt.cor(samp.data, output="distance")
samp.bw.dist.mat
# To convert the distances into an object of class `dist'
as.dist(samp.bw.dist.mat)
# }
Run the code above in your browser using DataLab