bkmrhat v0.1.16

0

Monthly downloads

0th

Percentile

Parallel Chain Tools for Bayesian Kernel Machine Regression

Bayesian kernel machine regression (from the 'bkmr' package) is a Bayesian semi-parametric generalized linear model approach under identity and probit links. There are a number of functions in this package that extend Bayesian kernel machine regression fits to allow multiple-chain inference and diagnostics, which leverage functions from the 'future', 'rstan', and 'coda' packages. Reference: Bobb, J. F., Henn, B. C., Valeri, L., & Coull, B. A. (2018). Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. ; <doi:10.1186/s12940-018-0413-y>.

Functions in bkmrhat

Name Description
PredictorResponseUnivar_parallel Univariate predictor response summary by chain
comb_bkmrfits Combine multiple BKMR chains
SingVarRiskSummaries_parallel Single variable summary by chain
as.mcmc.list.bkmrfit.list Convert multi-chain bkmrfit to mcmc.list for coda MCMC diagnostics
ExtractPIPs_parallel Posterior inclusion probabilities by chain
SamplePred_parallel Posterior samples of E(Y|h(Z),X,beta) by chain
OverallRiskSummaries_parallel Overall summary by chain
as.mcmc.bkmrfit Convert bkmrfit to mcmc object for coda MCMC diagnostics
PredictorResponseBivar_parallel Bivariate predictor response by chain
kmbayes_diag MCMC diagnostics using rstan
kmbayes_parallel Run multiple BKMR chains in parallel
predict.bkmrfit Posterior mean/sd predictions
No Results!

Vignettes of bkmrhat

Name
bkmrhat-vignette.Rmd
No Results!

Last month downloads

Details

Date 2020-09-08
License GPL (>= 3)
VignetteBuilder knitr
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.1.0
NeedsCompilation no
Packaged 2020-09-08 14:58:53 UTC; akeil
Repository CRAN
Date/Publication 2020-09-16 09:10:12 UTC
imports bkmr , future , rstan
depends coda , R (>= 3.5.0)
suggests knitr , markdown
Contributors

Include our badge in your README

[![Rdoc](http://www.rdocumentation.org/badges/version/bkmrhat)](http://www.rdocumentation.org/packages/bkmrhat)