# Generating data using Q-matrix structure from data example in Chapter 9 of
# Rupp, Templin, & Henson (2010).
RTHCh9ModelSyntax = "
item1 ~ A1
item2 ~ A2
item3 ~ A3
item4 ~ A1 + A2 + A1:A2
item5 ~ A1 + A3 + A1:A3
item6 ~ A2 + A3 + A2:A3
item7 ~ A1 + A2 + A3 + A1:A2 + A1:A3 + A2:A3 + A1:A2:A3
# Latent Variable Specifications:
A1 A2 A3 <- latent(unit='rows',distribution='bernoulli',structure='univariate',type='ordinal')
# Observed Variable Specifications:
item1-item7 <- observed(distribution = 'bernoulli', link = 'probit')
"
simSpecs = setDefaultSimulatedParameters(
observedIntercepts = "runif(n = 1, min = -1, max = -1)",
observedMainEffects = "runif(n = 1, min = 2, max = 2)",
observedInteractions = "runif(n = 1, min = 0, max = 0)",
latentIntercepts = "runif(n = 1, min = 0, max = 0)",
latentMainEffects = "runif(n = 1, min = 0, max = 0)",
latentInteractions = "runif(n = 1, min = 0, max = 0)"
)
simulatedData = blatentSimulate(modelText = RTHCh9ModelSyntax, nObs = 1000,
defaultSimulatedParameters = simSpecs)
# setting values for specific parameters:
paramVals = createParameterVector(modelText = RTHCh9ModelSyntax)
paramVals["item1.(Intercept)"] = -2
# creating data
simulatedData2 = blatentSimulate(modelText = RTHCh9ModelSyntax, nObs = 1000,
defaultSimulatedParameters = simSpecs, paramVals = paramVals)
Run the code above in your browser using DataLab