Learn R Programming

bliss

Bayesian functional Linear regression with Sparse Step functions (BLiSS)

A method for the Bayesian Functional Linear Regression model (functions-on-scalar), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available.

https://pmgrollemund.github.io/bliss/

Installation

To install the bliss package, the easiest is to install it directly from GitHub. Open an R session and run the following commands:

library(remotes) 
install_github("pmgrollemund/bliss", build_vignettes=TRUE)

Usage

Once the package is installed on your computer, it can be loaded into a R session:

library(bliss)
help(package="bliss")

Citation

As a lot of time and effort were spent in creating the bliss method, please cite it when using it for data analysis:

Grollemund, Paul-Marie; Abraham, Christophe; Baragatti, Meïli; Pudlo, Pierre. Bayesian Functional Linear Regression with Sparse Step Functions. Bayesian Anal. 14 (2019), no. 1, 111--135. doi:10.1214/18-BA1095. https://projecteuclid.org/euclid.ba/1524103229

You should also cite the bliss package:

citation("bliss")

See also citation() for citing R itself.

Copy Link

Version

Install

install.packages('bliss')

Monthly Downloads

303

Version

1.1.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Paul-Marie Grollemund

Last Published

July 17th, 2024

Functions in bliss (1.1.1)

corr_matrix

corr_matrix
data1

a list of data
interpretation_plot

interpretation_plot
integrate_trapeze

integrate_trapeze
sigmoid

sigmoid
res_bliss1

A result of the BliSS method
fit_Bliss

fit_Bliss
lines_bliss

lines_bliss
dposterior

dposterior
printbliss

Print a bliss Object
param1

A list of param for bliss model
bliss

bliss: Bayesian functional Linear regression with Sparse Step functions
reduce_x

reduce_x
determine_intervals

determine_intervals
do_need_to_reduce

do_need_to_reduce
sim_x

sim_x
support_estimation

support_estimation
pdexp

pdexp
post_treatment_bliss

post_treatment_bliss
compute_random_walk

compute_random_walk
compute_starting_point_sann

compute_starting_point_sann
predict_bliss

predict_bliss
sim

sim
predict_bliss_distribution

predict_bliss_distribution
sigmoid_sharp

sigmoid_sharp
compute_beta_sample

compute_beta_sample
choose_beta

choose_beta
BIC_model_choice

BIC_model_choice
compute_chains_info

compute_chains_info
compute_beta_posterior_density

compute_beta_posterior_density
%between%

between
build_Fourier_basis

build_Fourier_basis
Bliss_Simulated_Annealing

Bliss_Simulated_Annealing
Bliss_Gibbs_Sampler

Bliss_Gibbs_Sampler
change_grid

change_grid
image_Bliss

image_Bliss