data(ccdata)
fit <- lexpit(y~female,y~packyear,weights = ccdata$w,
strata=ccdata$strata,data=ccdata)
summary(fit)
# LEXPIT MODEL FOR BLADDER CANCER RISK BY AGE 70
formula.linear <- bladder70~female * smoke_status
formula.expit <- bladder70~redmeat+fiber.centered+I(fiber.centered^2)
# ADDITIVE EFFECTS FOR GENDER AND SMOKING
# LOGISTIC EFFECTS FOR FIBER AND REDMEAT CONSUMPTION
data(aarp)
fit <- lexpit(formula.linear, formula.expit, aarp, weight=aarp$w)
logLik(fit)
model.formula(fit)
# SUMMARY
summary(fit)
confint(fit)
# FITTED ABSOLUTE RISK PER 1,000 PERSONS
head(predict(fit)*1000)
Run the code above in your browser using DataLab