Learn R Programming

blockcluster (version 3.0.2)

cocluststrategy: Strategy function

Description

This function is used to set all the parameters for Co-clustering. It returns an object of class strategy which can be given as input to cocluster function.

Usage

cocluststrategy(algo = "BEM", initmethod = character(),
    stopcriteria = "Parameter", nbiterationsxem = 50,
    nbiterationsXEM = 500, nbinititerations = 10,
    initepsilon = 0.01, nbiterations_int = 5,
    epsilon_int = 0.01, epsilonxem = 1e-04,
    epsilonXEM = 1e-10, nbtry = 2, nbxem = 5,
    bayesianform = FALSE, hyperparam = numeric(0))

Arguments

algo
The valid values for this parameter are "BEM" (Default), "BCEM" and "BSEM".
stopcriteria
It specifies the stopping criteria. It can be based on either relative change in parameters (preffered due to computation reasons) value or relative change in pseudo log-likelihood. Valid criterion values are "Parameter" and "Likelihood". Default
initmethod
Method to initialize model parameters. The valid values are "CEMInit", "FuzzyCEMInit" and "RandomInit". For now only one kind of initialization exist for every model currently available in the package. Hence default value for initialization is set
nbinititerations
Number of Global iterations used in initialization step. Default value is 10.
initepsilon
Tolerance value used while initialization. Default value is 1e-2.
nbiterations_int
Number of iterations for internal E step. Default value is 5.
epsilon_int
Tolerance value for relative change in Parameter/likelihood for internal E-step. Default value is 1e-2.
nbtry
Number of tries (XEM steps). Default value is 2.
nbxem
Number of xem steps. Default value is 5.
nbiterationsxem
Number of EM iterations used during xem step. Default value is 50.
nbiterationsXEM
Number of EM iterations used during XEM step. Default value is 500.
epsilonxem
Tolerance value used during xem step. Default value is 1e-4.
epsilonXEM
Tolerance value used during XEM step. Default value is 1e-10
bayesianform
Boolean parameter to indicate whether to run algorithms in bayesian settings or not.Default value is false.
hyperparam
Hyper-parameters ("a" and "b") in case of Bayesian settings.

Value

  • Object of class strategy

Examples

Run this code
#Default strategy values

strategy<-cocluststrategy()
summary(strategy)

Run the code above in your browser using DataLab