Learn R Programming

blockcluster (version 4.0.2)

coclusterBinary: Co-Clustering function for Binary data.

Description

This function performs Co-Clustering (simultaneous clustering of rows and columns ) for Binary data-sets using latent block models. It can also be used to perform semi-supervised co-clustering.

Usage

coclusterBinary(data, semisupervised = FALSE, rowlabels = numeric(0), collabels = numeric(0), model = character(0), nbcocluster, strategy = coclusterStrategy(), a = 1, b = 1)

Arguments

data
Input data as matrix (or list containing data matrix)
semisupervised
Boolean value specifying whether to perform semi-supervised co-clustering or not. Make sure to provide row and/or column labels if specified value is true. The default value is false.
rowlabels
Vector specifying the class of rows. The class number starts from zero. Provide -1 for unknown row class.
collabels
Vector specifying the class of columns. The class number starts from zero. Provide -1 for unknown column class.
model
This is the name of model. The following models exists for Binary data:
Model Data-type Proportions
Dispersion/Variance pik_rhol_epsilonkl(Default) binary
unequal unequal pik_rhol_epsilon
binary unequal equal
pi_rho_epsilonkl binary equal
unequal pi_rho_epsilon binary
equal equal Model
nbcocluster
Integer vector specifying the number of row and column clusters respectively.
strategy
Object of class strategy.
a
First hyper-parameter in case of Bayesian settings. Default is 1 (no prior).
b
Second hyper-parameter in case of Bayesian settings. Default is 1 (no prior).

Value

Return an object of BinaryOptions.

Examples

Run this code

## Simple example with simulated binary data
## load data
data(binarydata)
## usage of coclusterBinary function in its most simplest form
out<-coclusterBinary(binarydata,nbcocluster=c(2,3))
## Summarize the output results
summary(out)
## Plot the original and Co-clustered data 
plot(out)


Run the code above in your browser using DataLab