Controls for KD algorithm used in the package (see knn for details).
control_kd(
algorithm = "dual_tree",
epsilon = 0,
leaf_size = 20,
random_basis = FALSE,
rho = 0.7,
tau = 0,
tree_type = "kd",
...
)Returns a list with parameters.
Type of neighbor search: 'naive', 'single_tree', 'dual_tree', 'greedy'.
If specified, will do approximate nearest neighbor search with given relative error.
Leaf size for tree building (used for kd-trees, vp trees, random projection trees, UB trees, R trees, R* trees, X trees, Hilbert R trees, R+ trees, R++ trees, spill trees, and octrees).
Before tree-building, project the data onto a random orthogonal basis.
Balance threshold (only valid for spill trees).
Overlapping size (only valid for spill trees).
Type of tree to use: 'kd', 'vp', 'rp', 'max-rp', 'ub', 'cover', 'r', 'r-star',
'x', 'ball', 'hilbert-r', 'r-plus', 'r-plus-plus', 'spill', 'oct'.
Additional arguments.