Learn R Programming

Overview

Description

This R package is designed to block records for data deduplication and record linkage (also known as entity resolution) using approximate nearest neighbor algorithms (ANN) and graphs (via the igraph package).

It supports the following R packages that bind to specific ANN algorithms:

  • rnndescent (default, very powerful, supports sparse matrices),
  • RcppHNSW (powerful but does not support sparse matrices),
  • RcppAnnoy,
  • mlpack (see mlpack::lsh and mlpack::knn).

The package can be used with the reclin2 package via the blocking::pair_ann function.

Installation

Install the stable version from CRAN:

install.packages("blocking") 

You can also install the development version from GitHub:

# install.packages("pak") # uncomment if needed
pak::pkg_install("ncn-foreigners/blocking")

Basic usage

Load packages for the examples:

library(blocking)
library(reclin2)
#> Loading required package: data.table

Generate simple data with three groups (df_example) and reference data (df_base):

df_example <- data.frame(txt = c(
  "jankowalski",
  "kowalskijan",
  "kowalskimjan",
  "kowaljan",
  "montypython",
  "pythonmonty",
  "cyrkmontypython",
  "monty"
))
df_base <- data.frame(txt = c("montypython", "kowalskijan", "other"))
df_example
#>               txt
#> 1     jankowalski
#> 2     kowalskijan
#> 3    kowalskimjan
#> 4        kowaljan
#> 5     montypython
#> 6     pythonmonty
#> 7 cyrkmontypython
#> 8           monty
df_base
#>           txt
#> 1 montypython
#> 2 kowalskijan
#> 3       other

Deduplication using the blocking function. Output contains information:

  • the method used (nnd refers to the NN descent algorithm),
  • number of blocks created (here 2 blocks),
  • number of columns used for blocking, i.e., how many shingles were created by the text2vec package (here 28),
  • reduction ratio, i.e., how large the reduction of comparison pairs is (here 0.5714, which means blocking reduces comparisons by over 57%).
blocking_result <- blocking(x = df_example$txt)
blocking_result
#> ========================================================
#> Blocking based on the nnd method.
#> Number of blocks: 2.
#> Number of columns used for blocking: 28.
#> Reduction ratio: 0.5714.
#> ========================================================
#> Distribution of the size of the blocks:
#> 4 
#> 2

Table with blocking results contains:

  • row numbers from the original data,
  • block number (integers),
  • distance (from the ANN algorithm).
blocking_result$result
#>        x     y block       dist
#>    <int> <int> <num>      <num>
#> 1:     1     2     1 0.10000002
#> 2:     2     3     1 0.14188367
#> 3:     2     4     1 0.28286284
#> 4:     5     6     2 0.08333331
#> 5:     5     7     2 0.13397455
#> 6:     5     8     2 0.27831215

Deduplication using the pair_ann function for integration with the reclin2 package. Use the pipeline with the reclin2 package:

pair_ann(x = df_example, on = "txt") |>
  compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
  score_simple("score", on = "txt") |>
  select_threshold("threshold", score = "score", threshold = 0.55) |>
  link(selection = "threshold")
#>   Total number of pairs: 8 pairs
#> 
#> Key: <.y>
#>       .y    .x       txt.x           txt.y
#>    <int> <int>      <char>          <char>
#> 1:     2     1 jankowalski     kowalskijan
#> 2:     3     1 jankowalski    kowalskimjan
#> 3:     3     2 kowalskijan    kowalskimjan
#> 4:     4     1 jankowalski        kowaljan
#> 5:     4     2 kowalskijan        kowaljan
#> 6:     6     5 montypython     pythonmonty
#> 7:     7     5 montypython cyrkmontypython
#> 8:     8     5 montypython           monty

Linking records using the same function where df_base is the “register” and df_example is the reference data:

pair_ann(x = df_base, y = df_example, on = "txt", deduplication = FALSE) |>
  compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
  score_simple("score", on = "txt") |>
  select_threshold("threshold", score = "score", threshold = 0.55) |>
  link(selection = "threshold")
#>   Total number of pairs: 8 pairs
#> 
#> Key: <.y>
#>       .y    .x       txt.x           txt.y
#>    <int> <int>      <char>          <char>
#> 1:     1     2 kowalskijan     jankowalski
#> 2:     2     2 kowalskijan     kowalskijan
#> 3:     3     2 kowalskijan    kowalskimjan
#> 4:     4     2 kowalskijan        kowaljan
#> 5:     5     1 montypython     montypython
#> 6:     6     1 montypython     pythonmonty
#> 7:     7     1 montypython cyrkmontypython
#> 8:     8     1 montypython           monty

See also

See section Data Integration (Statistical Matching and Record Linkage) in the Official Statistics Task View.

Packages that allow blocking:

  • klsh – k-means locality sensitive hashing,
  • reclin2pair_blocking, pair_minsim functions,
  • fastLinkblockData function.

Other:

  • clevr – evaluation of clustering, helper functions,
  • exchanger – Bayesian Entity Resolution with Exchangeable Random Partition Priors.

Funding

Work on this package is supported by the National Science Centre, OPUS 20 grant no. 2020/39/B/HS4/00941.

Copy Link

Version

Install

install.packages('blocking')

Version

1.0.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Maciej Ber<c4><99>sewicz

Last Published

June 18th, 2025

Functions in blocking (1.0.1)

method_mlpack

An internal function to use the LSH and KD-tree algorithm via the mlpack package.
method_nnd

An internal function to use the NN descent algorithm via the rnndescent package.
est_block_error

Estimate errors due to blocking in record linkage
sentence_to_vector

Sentence to vector
method_annoy

An internal function to use Annoy algorithm via the RcppAnnoy package.
census

Fictional census data
control_annoy

Controls for the Annoy algorithm
control_kd

Controls for the k-d tree algorithm
control_hnsw

Controls for the HNSW algorithm
control_lsh

Controls for the LSH algorithm
blocking

Block records based on character vectors
pair_ann

Integration with the reclin2 package
controls_txt

Controls for processing character data
RLdata500

RLdata500 dataset from the RecordLinkage package
cis

Fictional customer data
method_hnsw

An internal function to use HNSW algorithm via the RcppHNSW package.
control_nnd

Controls for the NND algorithm
controls_ann

Controls for approximate nearest neighbours algorithms
foreigners

Fictional 2024 population of foreigners in Poland