Overview
Description
This R package is designed to block records for data deduplication and
record linkage (also known as entity resolution) using approximate
nearest neighbor algorithms
(ANN) and graphs
(via the igraph
package).
It supports the following R packages that bind to specific ANN algorithms:
- rnndescent (default, very powerful, supports sparse matrices),
- RcppHNSW (powerful but does not support sparse matrices),
- RcppAnnoy,
- mlpack (see
mlpack::lsh
andmlpack::knn
).
The package can be used with the
reclin2 package via the
blocking::pair_ann
function.
Installation
Install the stable version from CRAN:
install.packages("blocking")
You can also install the development version from GitHub:
# install.packages("pak") # uncomment if needed
pak::pkg_install("ncn-foreigners/blocking")
Basic usage
Load packages for the examples:
library(blocking)
library(reclin2)
#> Loading required package: data.table
Generate simple data with three groups (df_example
) and reference data
(df_base
):
df_example <- data.frame(txt = c(
"jankowalski",
"kowalskijan",
"kowalskimjan",
"kowaljan",
"montypython",
"pythonmonty",
"cyrkmontypython",
"monty"
))
df_base <- data.frame(txt = c("montypython", "kowalskijan", "other"))
df_example
#> txt
#> 1 jankowalski
#> 2 kowalskijan
#> 3 kowalskimjan
#> 4 kowaljan
#> 5 montypython
#> 6 pythonmonty
#> 7 cyrkmontypython
#> 8 monty
df_base
#> txt
#> 1 montypython
#> 2 kowalskijan
#> 3 other
Deduplication using the blocking
function. Output contains
information:
- the method used (
nnd
refers to the NN descent algorithm), - number of blocks created (here 2 blocks),
- number of columns used for blocking, i.e., how many shingles were
created by the
text2vec
package (here 28), - reduction ratio, i.e., how large the reduction of comparison pairs is (here 0.5714, which means blocking reduces comparisons by over 57%).
blocking_result <- blocking(x = df_example$txt)
blocking_result
#> ========================================================
#> Blocking based on the nnd method.
#> Number of blocks: 2.
#> Number of columns used for blocking: 28.
#> Reduction ratio: 0.5714.
#> ========================================================
#> Distribution of the size of the blocks:
#> 4
#> 2
Table with blocking results contains:
- row numbers from the original data,
- block number (integers),
- distance (from the ANN algorithm).
blocking_result$result
#> x y block dist
#> <int> <int> <num> <num>
#> 1: 1 2 1 0.10000002
#> 2: 2 3 1 0.14188367
#> 3: 2 4 1 0.28286284
#> 4: 5 6 2 0.08333331
#> 5: 5 7 2 0.13397455
#> 6: 5 8 2 0.27831215
Deduplication using the pair_ann
function for integration with the
reclin2
package. Use the pipeline with the reclin2
package:
pair_ann(x = df_example, on = "txt") |>
compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
score_simple("score", on = "txt") |>
select_threshold("threshold", score = "score", threshold = 0.55) |>
link(selection = "threshold")
#> Total number of pairs: 8 pairs
#>
#> Key: <.y>
#> .y .x txt.x txt.y
#> <int> <int> <char> <char>
#> 1: 2 1 jankowalski kowalskijan
#> 2: 3 1 jankowalski kowalskimjan
#> 3: 3 2 kowalskijan kowalskimjan
#> 4: 4 1 jankowalski kowaljan
#> 5: 4 2 kowalskijan kowaljan
#> 6: 6 5 montypython pythonmonty
#> 7: 7 5 montypython cyrkmontypython
#> 8: 8 5 montypython monty
Linking records using the same function where df_base
is the
“register” and df_example
is the reference data:
pair_ann(x = df_base, y = df_example, on = "txt", deduplication = FALSE) |>
compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
score_simple("score", on = "txt") |>
select_threshold("threshold", score = "score", threshold = 0.55) |>
link(selection = "threshold")
#> Total number of pairs: 8 pairs
#>
#> Key: <.y>
#> .y .x txt.x txt.y
#> <int> <int> <char> <char>
#> 1: 1 2 kowalskijan jankowalski
#> 2: 2 2 kowalskijan kowalskijan
#> 3: 3 2 kowalskijan kowalskimjan
#> 4: 4 2 kowalskijan kowaljan
#> 5: 5 1 montypython montypython
#> 6: 6 1 montypython pythonmonty
#> 7: 7 1 montypython cyrkmontypython
#> 8: 8 1 montypython monty
See also
See section Data Integration (Statistical Matching and Record Linkage)
in the Official Statistics Task
View.
Packages that allow blocking:
- klsh – k-means locality sensitive hashing,
- reclin2 –
pair_blocking
,pair_minsim
functions, - fastLink –
blockData
function.
Other:
- clevr – evaluation of clustering, helper functions,
- exchanger – Bayesian Entity Resolution with Exchangeable Random Partition Priors.
Funding
Work on this package is supported by the National Science Centre, OPUS 20 grant no. 2020/39/B/HS4/00941.