# NOT RUN {
#
# SBM
#
## generation of one SBM network
npc <- 30 # nodes per class
Q <- 3 # classes
n <- npc * Q # nodes
Z<-diag(Q)%x%matrix(1,npc,1)
L<-70*matrix(runif(Q*Q),Q,Q)
M_in_expectation<-Z%*%L%*%t(Z)
M<-matrix(
rpois(
length(as.vector(M_in_expectation)),
as.vector(M_in_expectation))
,n,n)
## estimation
my_model <- BM_poisson("SBM",M )
my_model$estimate()
which.max(my_model$ICL)
##
## SBM symmetric
##
## generation of one SBM_sym network
npc <- 30 # nodes per class
Q <- 3 # classes
n <- npc * Q # nodes
Z<-diag(Q)%x%matrix(1,npc,1)
L<-70*matrix(runif(Q*Q),Q,Q)
L[lower.tri(L)]<-t(L)[lower.tri(L)]
M_in_expectation<-Z%*%L%*%t(Z)
M<-matrix(
rpois(
length(as.vector(M_in_expectation)),
as.vector(M_in_expectation))
,n,n)
M[lower.tri(M)]<-t(M)[lower.tri(M)]
## estimation
my_model <- BM_poisson("SBM_sym",M )
my_model$estimate()
which.max(my_model$ICL)
##
## LBM
##
## generation of one LBM network
npc <- c(50,40) # nodes per class
Q <- c(2,3) # classes
n <- npc * Q # nodes
Z1<-diag(Q[1])%x%matrix(1,npc[1],1)
Z2<-diag(Q[2])%x%matrix(1,npc[2],1)
L<-70*matrix(runif(Q[1]*Q[2]),Q[1],Q[2])
M_in_expectation<-Z1%*%L%*%t(Z2)
M<-matrix(
rpois(
length(as.vector(M_in_expectation)),
as.vector(M_in_expectation))
,n[1],n[2])
## estimation
my_model <- BM_poisson("LBM",M )
my_model$estimate()
which.max(my_model$ICL)
# }
Run the code above in your browser using DataLab