powered by
Lorenz curve is a visual representation of inequality. It is used to measure the discriminatory power of the predictive model.
blr_lorenz_curve( model, data = NULL, title = "Lorenz Curve", xaxis_title = "Cumulative Events %", yaxis_title = "Cumulative Non Events %", diag_line_col = "red", lorenz_curve_col = "blue", print_plot = TRUE )
An object of class glm.
glm
A tibble or data.frame.
tibble
data.frame
Plot title.
X axis title.
Y axis title.
Diagonal line color.
Color of the lorenz curve.
logical; if TRUE, prints the plot else returns a plot object.
TRUE
Other model validation techniques: blr_confusion_matrix(), blr_decile_capture_rate(), blr_decile_lift_chart(), blr_gains_table(), blr_gini_index(), blr_ks_chart(), blr_roc_curve(), blr_test_hosmer_lemeshow()
blr_confusion_matrix()
blr_decile_capture_rate()
blr_decile_lift_chart()
blr_gains_table()
blr_gini_index()
blr_ks_chart()
blr_roc_curve()
blr_test_hosmer_lemeshow()
# NOT RUN { model <- glm(honcomp ~ female + read + science, data = hsb2, family = binomial(link = 'logit')) blr_lorenz_curve(model) # }
Run the code above in your browser using DataLab