if (FALSE) {
data(stocks)
# Fit a DCC model
fit <- bmgarch(data = stocks[1:100, c("toyota", "nissan" )],
parameterization = "DCC", standardize_data = TRUE,
iterations = 500)
# Compute expected log-predictive density (elpd) using the backward mode
# L is the upper boundary of the time-series before we engage in LFO-CV
lfob <- loo(fit, mode = 'backward', L = 50 )
print(lfob)
}
Run the code above in your browser using DataLab