Learn R Programming

bnRep (version 0.0.3)

GDIpathway1: GDIpathway Bayesian Networks

Description

Integrative network modeling highlights the crucial roles of Rho-GDI signaling pathway in the progression of non-small cell lung cancer.

Arguments

Value

An object of class bn.fit. Refer to the documentation of bnlearn for details.

Format

A discrete Bayesian network to pinpoint key cellular factors and pathways likely to be involved with the onset and progression of non-small cell lung cancer (healthy patients). The network was available from an associated repository. The vertices are:

ARHGAP6

(Above, Below);

ARHGEF19

(Above, Below);

CD44

(Above, Below);

CDC42-IT1

(Above, Below);

CDH1

(Above, Below);

CFL2

(Above, Below);

DAGLB

(Above, Below);

DGKZ

(Above, Below);

DLC1

(Above, Below);

ECM1

(Above, Below);

ERMAP

(Above, Below);

ERMP1

(Above, Below);

GNA11

(Above, Below);

GNG11

(Above, Below);

GPRC5A

(Above, Below);

ITGB2

(Above, Below);

LACTB

(Above, Below);

LIMK2

(Above, Below);

PAAF1

(Above, Below);

PAK1

(Above, Below);

PAK1

(Above, Below);

PIP

(Above, Below);

PIP4K2A

(Above, Below);

PIP5K1B

(Above, Below);

RAC2

(Above, Below);

RHOJ

(Above, Below);

ROCK2

(Above, Below);

RTKN

(Above, Below);

References

Gupta, S., Vundavilli, H., Osorio, R. S. A., Itoh, M. N., Mohsen, A., Datta, A., ... & Tripathi, L. P. (2022). Integrative network modeling highlights the crucial roles of rho-GDI signaling pathway in the progression of non-small cell lung cancer. IEEE Journal of Biomedical and Health Informatics, 26(9), 4785-4793.