Learn R Programming

bnRep (version 0.0.3)

corical: corical Bayesian Network

Description

Risk-benefit analysis of the AstraZeneca COVID-19 vaccine in Australia using a Bayesian network modelling framework.

Arguments

Value

An object of class bn.fit. Refer to the documentation of bnlearn for details.

Format

A discrete Bayesian network to perform risk-benefit analysis of vaccination. The probabilities were given in the referenced paper. The vertices are:

Age

(0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70+);

AZVaccineDoses

(One, Two, Three, Four);

BackgroundCSVTOver6Weeks

(Yes, No);

BackgroundPVTOver6Weeks

(Yes, No);

Covid19AssociatedCSVT

(Yes, No);

Covid19AssociatedPVT

(Yes, No);

DieFromBackgroundCSVT

(Yes, No);

DieFromBackgroundPVT

(Yes, No);

DieFromCovid19

(Yes, No);

DieFromCovid19AssociatedCSVT

(Yes, No);

DieFromCovid19AssociatedPVT

(Yes, No);

DieFromVaccineAssociatedTTS

(Yes, No);

IntensityOfCommunityTransmission

(None, ATAGI Low, ATAGI Med, ATAGI High, One Percent, Two Percent, NSW 200 Daily, NSW 1000 Daily, VIC 1000 Daily, QLD 1000 Daily);

RiskOfSymptomaticInfection

(Yes, No);

RiskOfSymptomaticInfectionUnderCurrentTransmissionAndVaccinationStatus

(Yes, No);

SARSCoV2Variant

(Alpha Wild, Delta);

Sex

(Male, Female);

VaccineAssociatedTTS

(Yes, No);

VaccineEffectivenessAgainstDeathIfInfected

(Effective, Not Effective);

VaccineEffectivenessAgainstSymptomaticInfection

(Effective, Not Effective);

References

Lau, C. L., Mayfield, H. J., Sinclair, J. E., Brown, S. J., Waller, M., Enjeti, A. K., ... & Litt, J. (2021). Risk-benefit analysis of the AstraZeneca COVID-19 vaccine in Australia using a Bayesian network modelling framework. Vaccine, 39(51), 7429-7440.