Learn R Programming

bnRep (version 0.0.3)

criminal1: criminal Bayesian Networks

Description

Using agent-based simulations to evaluate Bayesian networks for criminal scenarios.

Arguments

Value

An object of class bn.fit. Refer to the documentation of bnlearn for details.

Format

A discrete Bayesian network describing a criminal scenario (top-left of Figure 3). Probabilities were given within the referenced paper. The vertices are:

Motive

(0,1);

Sneak

(0,1);

Stealing

(0,1);

EPsychReport

(0,1);

ObjectDroppedAccidentally

(0,1);

ECameraSeenStealing

(0,1);

EObjectGone

(0,1);

ECamera

(0,1);

Scenario1

(0,1);

Scenario2

(0,1);

Scenari3

(0,1);

Constraint

(Scenario1, Scenario2, Scenario3, NA);

References

van Leeuwen, L., Verheij, B., Verbrugge, R., & Renooij, S. (2023, June). Using agent-based simulations to evaluate Bayesian Networks for criminal scenarios. In Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law (pp. 323-332).