
Last chance! 50% off unlimited learning
Sale ends in
Last chance! 50% off unlimited learning
Sale ends in
Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network.
An object of class bn.fit
. Refer to the documentation of bnlearn
for details.
A discrete Bayesian network for the accurate solution of scenario state probability. Probabilities were given within the referenced paper. The vertices are:
(True, False);
(True, False);
(True, False);
(I, II, III, IV);
(I, II, III, IV);
(True, False);
(I, II, III, IV);
(True, False);
(True, False);
(I, II, III, IV, V);
(True, False);
(I, II, III, IV);
(I, II, III, IV);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
Pang, L., Zhang, M., Yang, K., & Sun, S. (2023). Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network. Journal of Loss Prevention in the Process Industries, 83, 105055.