Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


bnRep (version 0.0.3)

dustexplosion: dustexplosion Bayesian Network

Description

Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network.

Arguments

Value

An object of class bn.fit. Refer to the documentation of bnlearn for details.

Format

A discrete Bayesian network for the accurate solution of scenario state probability. Probabilities were given within the referenced paper. The vertices are:

AccidentDoNotOccur

(True, False);

AccidentUnderControl

(True, False);

BlastWavesThroughPipes

(True, False);

BuildingDamage

(I, II, III, IV);

Casualties

(I, II, III, IV);

CombustibleDustAccumulates

(True, False);

DirectEconomicLosses

(I, II, III, IV);

DustAccumulationUnderControl

(True, False);

DustCloudDisappearance

(True, False);

DustExplosionIntensityCoefficient

(I, II, III, IV, V);

EndOfRescue

(True, False);

EnvironmentalImpact

(I, II, III, IV);

EquipmentDamage

(I, II, III, IV);

ExplosionPreventionMeasures

(True, False);

ExtinctionOfSpark

(True, False);

IgnitingTheDustCloud

(True, False);

InitiateEmergencyResponse

(True, False);

Misoperation

(True, False);

NoExplosionControlMeasures

(True, False);

OpenFireExtinguished

(True, False);

PreventFurtherExpansion

(True, False);

RestrictedSpace

(True, False);

SparkDetectorExtinguishSparks

(True, False);

SparkOccurence

(True, False);

StrengthenDustControl

(True, False);

TriggerSecondaryExplosion

(True, False);

References

Pang, L., Zhang, M., Yang, K., & Sun, S. (2023). Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network. Journal of Loss Prevention in the Process Industries, 83, 105055.