Practical application of a Bayesian network approach to poultry epigenetics and stress.
An object of class bn.fit
. Refer to the documentation of bnlearn
for details.
A discrete Bayesian network to provide further insights into the relationships among epigenetic features and a stressful condition in chickens. The Bayesian network is learned as in the referenced paper. The vertices are:
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
(0,1);
Videla Rodriguez, E. A., Pertille, F., Guerrero-Bosagna, C., Mitchell, J. B., Jensen, P., & Smith, V. A. (2022). Practical application of a Bayesian network approach to poultry epigenetics and stress. BMC Bioinformatics, 23(1), 261.