Usage
bnboot(data, statistic, R = 200, m = round(2/3 * nrow(data)),
sim = "ordinary", algorithm, algorithm.args = list(),
statistic.args = list(), debug = FALSE)
Arguments
data
a data frame, containing the variables in the model.
statistic
a function or a character string (the name of a
function) to be applied to each bootstrap replicate.
R
a positive integer, the number of bootstrap replicates.
m
a positive integer, the size of each bootstrap replicate.
sim
a character string indicating the type of simulation
required. Possible values are "ordinary"
(the default)
and "parametric"
.
algorithm
a character string, the learning algorithm to be
applied to the bootstrap replicates. Possible values are gs
,
iamb
, fast.iamb
, inter.iamb
, mmpc
and hc
. See
algorithm.args
a list of extra arguments to be passed to
the learning algorithm.
statistic.args
a list of extra arguments to be passed to
the function specified by statistic
.
debug
a boolean value. If TRUE
a lot of debugging output
is printed; otherwise the function is completely silent.