Fits a Bayesian Neural Network (BNN) model using a formula interface. The function parses the formula and data to create the input feature matrix and target vector, then fits the model using bnns.default.
# S3 method for default
bnns(
formula,
data,
L = 1,
nodes = rep(2, L),
act_fn = rep(2, L),
out_act_fn = 1,
iter = 1000,
warmup = 200,
thin = 1,
chains = 2,
cores = 2,
seed = 123,
prior_weights = NULL,
prior_bias = NULL,
prior_sigma = NULL,
verbose = FALSE,
refresh = max(iter/10, 1),
normalize = TRUE,
...
)An object of class "bnns" containing the fitted model and associated information, including:
fit: The fitted Stan model object.
data: A list containing the processed training data.
call: The matched function call.
formula: The formula used for the model.
A symbolic description of the model to be fitted. The formula should specify the response variable and predictors (e.g., y ~ x1 + x2).
A data frame containing the variables in the model.
An integer specifying the number of hidden layers in the neural network. Default is 1.
An integer or vector specifying the number of nodes in each hidden layer. If a single value is provided, it is applied to all layers. Default is 16.
An integer or vector specifying the activation function(s) for the hidden layers. Options are:
1 for tanh
2 for sigmoid (default)
3 for softplus
4 for ReLU
5 for linear
An integer specifying the activation function for the output layer. Options are:
1 for linear (default)
2 for sigmoid
3 for softmax
An integer specifying the total number of iterations for the Stan sampler. Default is 1e3.
An integer specifying the number of warmup iterations for the Stan sampler. Default is 2e2.
An integer specifying the thinning interval for Stan samples. Default is 1.
An integer specifying the number of Markov chains. Default is 2.
An integer specifying the number of CPU cores to use for parallel sampling. Default is 2.
An integer specifying the random seed for reproducibility. Default is 123.
A list specifying the prior distribution for the weights in the neural network. The list must include two components:
dist: A character string specifying the distribution type. Supported values are
"normal", "uniform", and "cauchy".
params: A named list specifying the parameters for the chosen distribution:
For "normal": Provide mean (mean of the distribution) and sd (standard deviation).
For "uniform": Provide alpha (lower bound) and beta (upper bound).
For "cauchy": Provide mu (location parameter) and sigma (scale parameter).
If prior_weights is NULL, the default prior is a normal(0, 1) distribution.
For example:
list(dist = "normal", params = list(mean = 0, sd = 1))
list(dist = "uniform", params = list(alpha = -1, beta = 1))
list(dist = "cauchy", params = list(mu = 0, sigma = 2.5))
A list specifying the prior distribution for the biases in the neural network. The list must include two components:
dist: A character string specifying the distribution type. Supported values are
"normal", "uniform", and "cauchy".
params: A named list specifying the parameters for the chosen distribution:
For "normal": Provide mean (mean of the distribution) and sd (standard deviation).
For "uniform": Provide alpha (lower bound) and beta (upper bound).
For "cauchy": Provide mu (location parameter) and sigma (scale parameter).
If prior_bias is NULL, the default prior is a normal(0, 1) distribution.
For example:
list(dist = "normal", params = list(mean = 0, sd = 1))
list(dist = "uniform", params = list(alpha = -1, beta = 1))
list(dist = "cauchy", params = list(mu = 0, sigma = 2.5))
A list specifying the prior distribution for the sigma parameter in regression
models (out_act_fn = 1). This allows for setting priors on the standard deviation of the residuals.
The list must include two components:
dist: A character string specifying the distribution type. Supported values are
"half-normal" and "inverse-gamma".
params: A named list specifying the parameters for the chosen distribution:
For "half-normal": Provide sd (standard deviation of the half-normal distribution).
For "inverse-gamma": Provide shape (shape parameter) and scale (scale parameter).
If prior_sigma is NULL, the default prior is a half-normal(0, 1) distribution.
For example:
list(dist = "half_normal", params = list(mean = 0, sd = 1))
list(dist = "inv_gamma", params = list(alpha = 1, beta = 1))
TRUE or FALSE: flag indicating whether to print intermediate output from Stan on the console, which might be helpful for model debugging.
refresh (integer) can be used to control how often the progress of the sampling is reported (i.e. show the progress every refresh iterations). By default, refresh = max(iter/10, 1). The progress indicator is turned off if refresh <= 0.
Logical. If TRUE (default), the input predictors
are normalized to have zero mean and unit variance before training.
Normalization ensures stable and efficient Bayesian sampling by standardizing
the input scale, which is particularly beneficial for neural network training.
If FALSE, no normalization is applied, and it is assumed that the input data
is already pre-processed appropriately.
Currently not in use.
The function uses the provided formula and data to generate the design matrix for the predictors and the response vector. It then calls helper function bnns_train to fit the Bayesian Neural Network model.
# \donttest{
# Example usage:
data <- data.frame(x1 = runif(10), x2 = runif(10), y = rnorm(10))
model <- bnns(y ~ -1 + x1 + x2,
data = data, L = 1, nodes = 2, act_fn = 3,
iter = 1e1, warmup = 5, chains = 1
)
# }
Run the code above in your browser using DataLab