Learn R Programming

bnormnlr (version 1.0)

infocrit: Expected Number of Parameters, DIC, AIC and BIC for bnlr fit.

Description

Function to calculate Expected Number of Parameters, DIC, AIC and BIC for bnlr output.

Usage

infocrit(model, burn)

Arguments

model
A list derived from bnlr function
burn
A vector indicating which samples must be discarded from the mcmc simulation

Value

a vector with:
pd
Expected Number of Parameters
DIC
Deviance Information Criterion
AIC
Akaike Information Criterion
BIC
Bayesian Information Criterion

References

Carlin, B. P. & Louis, T. A. (2009), Bayesian Methods for Data Analysis, 3rd edn, CRC Press, New York.

Gamerman, D. & Lopes, H. F. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn, CRC Press, New York.

Examples

Run this code
#######################################
###Simulation of heteroscedastic model
#######################################
utils::data(muscle, package = "MASS")
###mean and variance functions
fmu<-function(param,cov){ param[1] + param[2]*exp(-cov/exp(param[3]))}
fsgma<-function(param,cov){drop(exp(cov%*%param))}

###simulate heteroscedastic data
muscle$Length<-fmu(c(28.9632978, -34.2274097,  -0.4972977),muscle$Conc)+
rnorm(60,0,sqrt(exp(log(2)+.8*muscle$Conc)))

##Note: use more MCMC chains (i.e NC=10000) for more accurate results.
m2b<-bnlr(y=muscle$Length,f1=fmu,f2=fsgma,x=muscle$Conc,
z=matrix(rep(1,length(muscle$Length)),ncol=1),bta0=c(20,-30,-1),gma0=2,Nc=650)
m1b<-bnlr(y=muscle$Length,f1=fmu,f2=fsgma,x=muscle$Conc,z=cbind(1,muscle$Conc),
bta0=c(20,-30,0),gma0=c(.5,.5),Nc=650)

chainsum(m1b$chains,burn=1:65)
chainsum(m2b$chains,burn=1:65)
infocrit(m1b,1:65)
infocrit(m2b,1:65)

Run the code above in your browser using DataLab