# \donttest{
# First create a sample database
unified_db <- list(
measures = list(
test1 = list(reference = "@Smith2023[p.45]"),
test2 = list(reference = "Jones[2022]")
)
)
# Remove @, [, and ] from all references
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
category = "measures"
)
# Clean all entries EXCEPT specific ones
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
exclude_entries = c("forgiveness", "special_measure"),
category = "measures"
)
# Clean specific entries only
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
target_entries = c("ban_hate_speech", "born_nz"),
category = "measures"
)
# Clean all entries starting with "emp_" except "emp_special"
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
target_entries = "emp_*",
exclude_entries = "emp_special",
category = "measures"
)
# Replace characters and clean
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
replace_pairs = list(" " = "_", "." = ""),
trim_whitespace = TRUE,
category = "measures"
)
# Preview changes first
boilerplate_batch_clean(
db = unified_db,
field = "reference",
remove_chars = c("@", "[", "]"),
exclude_entries = "forgiveness",
category = "measures",
preview = TRUE
)
# }
Run the code above in your browser using DataLab