# Bessel function of the first kind J_0(1)
cyl_bessel_j(0, 1)
# Bessel function of the second kind Y_0(1)
cyl_neumann(0, 1)
# Modified Bessel function of the first kind I_0(1)
cyl_bessel_i(0, 1)
# Modified Bessel function of the second kind K_0(1)
cyl_bessel_k(0, 1)
# Spherical Bessel function of the first kind j_0(1)
sph_bessel(0, 1)
# Spherical Bessel function of the second kind y_0(1)
sph_neumann(0, 1)
# Derivative of the Bessel function of the first kind J_0(1)
cyl_bessel_j_prime(0, 1)
# Derivative of the Bessel function of the second kind Y_0(1)
cyl_neumann_prime(0, 1)
# Derivative of the modified Bessel function of the first kind I_0(1)
cyl_bessel_i_prime(0, 1)
# Derivative of the modified Bessel function of the second kind K_0(1)
cyl_bessel_k_prime(0, 1)
# Derivative of the spherical Bessel function of the first kind j_0(1)
sph_bessel_prime(0, 1)
# Derivative of the spherical Bessel function of the second kind y_0(1)
sph_neumann_prime(0, 1)
# Finding the first zero of the Bessel function of the first kind J_0
cyl_bessel_j_zero(0, 1)
# Finding the first zero of the Bessel function of the second kind Y_0
cyl_neumann_zero(0, 1)
# Finding multiple zeros of the Bessel function of the first kind J_0 starting from index 1
cyl_bessel_j_zero(0, start_index = 1, number_of_zeros = 5)
# Finding multiple zeros of the Bessel function of the second kind Y_0 starting from index 1
cyl_neumann_zero(0, start_index = 1, number_of_zeros = 5)
Run the code above in your browser using DataLab