# Beta distribution with shape parameters alpha = 2, beta = 5
dist <- beta_distribution(2, 5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
beta_pdf(0.5, 2, 5)
beta_lpdf(0.5, 2, 5)
beta_cdf(0.5, 2, 5)
beta_lcdf(0.5, 2, 5)
beta_quantile(0.5, 2, 5)
if (FALSE) {
# Find alpha given mean and variance
beta_find_alpha(mean = 0.3, variance = 0.02)
# Find alpha given beta, x, and probability
beta_find_alpha(beta = 5, x = 0.4, p = 0.6)
# Find beta given mean and variance
beta_find_beta(mean = 0.3, variance = 0.02)
# Find beta given alpha, x, and probability
beta_find_beta(alpha = 2, x = 0.4, p = 0.6)
}
Run the code above in your browser using DataLab