Learn R Programming

boostmath (version 1.4.0)

non_central_beta_distribution: Noncentral Beta Distribution Functions

Description

Functions to compute the probability density function, cumulative distribution function, and quantile function for the Noncentral Beta distribution.

Usage

non_central_beta_distribution(alpha, beta, lambda)

non_central_beta_pdf(x, alpha, beta, lambda)

non_central_beta_lpdf(x, alpha, beta, lambda)

non_central_beta_cdf(x, alpha, beta, lambda)

non_central_beta_lcdf(x, alpha, beta, lambda)

non_central_beta_quantile(p, alpha, beta, lambda)

Value

A single numeric value with the computed probability density, log-probability density, cumulative distribution, log-cumulative distribution, or quantile depending on the function called.

Arguments

alpha

first shape parameter (alpha > 0)

beta

second shape parameter (beta > 0)

lambda

noncentrality parameter (lambda >= 0)

x

quantile (0 <= x <= 1)

p

probability (0 <= p <= 1)

See Also

Boost Documentation for more details on the mathematical background.

Examples

Run this code
# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
dist <- non_central_beta_distribution(2, 3, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)

# Convenience functions
non_central_beta_pdf(0.5, 2, 3, 1)
non_central_beta_lpdf(0.5, 2, 3, 1)
non_central_beta_cdf(0.5, 2, 3, 1)
non_central_beta_lcdf(0.5, 2, 3, 1)
non_central_beta_quantile(0.5, 2, 3, 1)

Run the code above in your browser using DataLab