boostWithArcFs(x, B, data, .procArgs = NULL, metadata = NULL, initialWeights = rep.int(1, nrow(data))/nrow(data), analyzePerformance = defaultOOBPerformanceAnalysis, .boostBackendArgs = NULL)
boostWithArcX4(x, B, data, .procArgs = NULL, metadata = NULL, initialWeights = rep.int(1, nrow(data))/nrow(data), analyzePerformance = defaultOOBPerformanceAnalysis, .boostBackendArgs = NULL)
boostWithAdaBoost(x, B, data, .procArgs = NULL, metadata = NULL, initialWeights = rep.int(1, nrow(data))/nrow(data), analyzePerformance = defaultOOBPerformanceAnalysis, .boostBackendArgs = NULL)
train
' and 'predict
' or a
function that satisfies the definition of an estimation procedure given
below. The list input will invoke a call to
buildEstimationProcedure
. Function input will invoke a call to
wrapProcedure
, unless the function inherits from
'estimationProcedure
'. In either event, metadata may be required to
properly wrap x
. See the appropriate help documentation.boostBackend
comes with a switch, .formatData
(defaulted to TRUE
) which will look for an argument named
formula
inside .procArgs
and use the value of
formula
to format data
. If you don't want this to happen,
or if the data is already properly formatted, include
.formatData=FALSE
in metadata
.x
is a list, .procArgs
is a named list of lists with
entries .trainArgs
and .predictArgs
and each list is a
named list of arguments to pass to x$train
and x$predict
,
respectively. If x
is a function, .procArgs
is a named list
of arguments to pass to x
, in addition to data
and
weights
. See 'Examples' below.defaultOOBPerformanceAnalysis
is used.
See wrapPerformanceAnalyzer
for metadata that may
need to be passed to make analyzePerformance
compatible with the
boostr framework.wrapProcedure
, buildEstimationProcedure
,
wrapPerformanceAnalyzer
and/or boostBackend
.boostBackend
.boostr
" object that is the output of
boostBackend
.
boost
with the appropriate reweighters,
aggregators, and metadata.