Learn R Programming

⚠️There's a newer version (1.2) of this package.Take me there.

bootSVD (version 0.1)

Fast, Exact Bootstrap Principal Component Analysis for High Dimensional Data

Description

Implements fast, exact bootstrap Principal Component Analysis and Singular Value Decompositions for high dimensional data, as described in (arxiv.org/abs/1405.0922).

Copy Link

Version

Install

install.packages('bootSVD')

Monthly Downloads

456

Version

0.1

License

GPL-2

Maintainer

Aaron Fisher

Last Published

July 21st, 2014

Functions in bootSVD (0.1)

fastSVD

Fast SVD of a wide or tall matrix
getMomentsAndMomentCI

Calculate bootstrap moments and moment-based confidence intervals for the PCs.
bootSVD

Calculates bootstrap distribution of PCA (i.e. SVD) results
EEG_mu

Functional mean from EEG dataset
reindexDsByK

Allows for study of the bootstrap distribution of the k^th singular values, by re-indexing the list of $d^b$ vectors to be organized by PC index ($k$) rather than bootstrap index ($b$).
genQ

Generate random orthonormal matrix
qrSVD

Wrapper for svd, which uses random preconditioning to restart when svd fails to converge
genBootIndeces

Generate a random set of bootstrap resampling indeces
EEG_leadingV

Leading 5 Principal Components (PCs) from EEG dataset
bootPCA

Quickly calculates bootstrap PCA results (wrapper for bootSVD)
os

Quickly print an R object's size
EEG_score_var

Empirical variance of the first 5 score variables from EEG dataset
bootSVD_LD

Calculate bootstrap distribution of $n$-dimensional PCs
simEEG

Simulation functional EEG data
reindexPCsByK

Allows for calculation of low dimensional standard errors & percentiles, by re-indexing the $A^b$ by PC index ($k$) rather than bootstrap index ($b$).
As2Vs

Convert low dimensional bootstrap components to high dimensional bootstrap components