Learn R Programming

bootstrap (version 2015.2)

abcnon: Nonparametric ABC Confidence Limits

Description

See Efron and Tibshirani (1993) for details on this function.

Usage

abcnon(x, tt, epsilon=0.001, alpha=c(0.025, 0.05, 0.1, 0.16, 0.84, 0.9, 0.95, 0.975))

Arguments

x
the data. Must be either a vector, or a matrix whose rows are the observations
tt
function defining the parameter in the resampling form tt(p,x), where p is the vector of proportions and x is the data
epsilon
optional argument specifying step size for finite difference calculations
alpha
optional argument specifying confidence levels desired

Value

list with following components
limits
The estimated confidence points, from the ABC and standard normal methods
stats
list consisting of t0=observed value of tt, sighat=infinitesimal jackknife estimate of standard error of tt, bhat=estimated bias
constants
list consisting of a=acceleration constant, z0=bias adjustment, cq=curvature component
tt.inf
approximate influence components of tt
pp
matrix whose rows are the resampling points in the least favourable family. The abc confidence points are the function tt evaluated at these points
call
The deparsed call

References

Efron, B, and DiCiccio, T. (1992) More accurate confidence intervals in exponential families. Biometrika 79, pages 231-245.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York, London.

Examples

Run this code
# compute abc intervals for the mean
x <- rnorm(10)
theta <- function(p,x) {sum(p*x)/sum(p)}
results <- abcnon(x, theta)  
# compute abc intervals for the correlation
x <- matrix(rnorm(20),ncol=2)
theta <- function(p, x)
{
    x1m <- sum(p * x[, 1])/sum(p)
    x2m <- sum(p * x[, 2])/sum(p)
    num <- sum(p * (x[, 1] - x1m) * (x[, 2] - x2m))
    den <- sqrt(sum(p * (x[, 1] - x1m)^2) *
              sum(p * (x[, 2] - x2m)^2))
    return(num/den)
}
results <- abcnon(x, theta)   

Run the code above in your browser using DataLab