Learn R Programming

bootstrap (version 2015.2)

abcpar: Parametric ABC Confidence Limits

Description

See Efron and Tibshirani (1993) for details on this function.

Usage

abcpar(y, tt, S, etahat, mu, n=rep(1,length(y)),lambda=0.001, alpha=c(0.025, 0.05, 0.1, 0.16))

Arguments

y
vector of data
tt
function of expectation parameter mu defining the parameter of interest
S
maximum likelihood estimate of the covariance matrix of x
etahat
maximum likelihood estimate of the natural parameter eta
mu
function giving expectation of x in terms of eta
n
optional argument containing denominators for binomial (vector of length length(x))
lambda
optional argument specifying step size for finite difference calculation
alpha
optional argument specifying confidence levels desired

Value

list with the following components
call
the call to abcpar
limits
The nominal confidence level, ABC point, quadratic ABC point, and standard normal point.
stats
list consisting of observed value of tt, estimated standard error and estimated bias
constants
list consisting of a=acceleration constant, z0=bias adjustment, cq=curvature component
,
asym.05
asymmetry component

References

Efron, B, and DiCiccio, T. (1992) More accurate confidence intervals in exponential families. Bimometrika 79, pages 231-245.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York, London.

Examples

Run this code
# binomial
# x is a p-vector of successes, n is a p-vector of 
#  number of trials
## Not run: 
# S <- matrix(0,nrow=p,ncol=p)
# S[row(S)==col(S)] <- x*(1-x/n)
# mu <- function(eta,n){n/(1+exp(eta))}
# etahat <- log(x/(n-x))
# #suppose p=2 and we are interested in mu2-mu1
# tt <- function(mu){mu[2]-mu[1]}
# x <- c(2,4); n <- c(12,12)
# a <- abcpar(x, tt, S, etahat,n)
# ## End(Not run)

Run the code above in your browser using DataLab