auxiliary functions are not intended to be directly called from the user.
np.boxcox(
formula,
groups = 1,
data,
K = 3,
tol = 0.5,
lambda = 1,
steps = 500,
EMdev.change = 1e-04,
plot.opt = 1,
verbose = TRUE,
start = "gq",
...
)vc.boxcox(
formula,
groups = 1,
data,
K = 3,
tol = 0.5,
lambda = 1,
steps = 500,
EMdev.change = 1e-04,
plot.opt = 1,
verbose = TRUE,
start = "gq",
...
)
np.em(
y,
x,
K,
lambda = 1,
steps = 500,
tol = 0.5,
start = "gq",
EMdev.change = 1e-04,
plot.opt = 1,
verbose = TRUE,
...
)
vc.em(
y,
x,
sizes = 1,
K,
lambda,
steps = 500,
tol = 0.5,
start = "gq",
EMdev.change = 1e-04,
plot.opt = 1,
verbose = TRUE,
...
)
np.estep(y, x, lambda, p, beta, z, sigma)
vc.estep(Y, X, sizes = 1, lambda, p, beta, z, sigma)
np.mstep(y, x, beta, lambda, w)
vc.mstep(Y, X, sizes = 1, beta, lambda, w)
np.theta(y, x, lambda, beta, z)
vc.theta(Y, X, sizes, lambda, beta, z)
np.bhat(y, x, w, z, lambda)
bhat(Y, X, sizes, w, z, lambda)
np.zk(y, x, w, beta, lambda)
zk(Y, X, sizes, w, beta, lambda)
fik(y, x, lambda, beta, z, sigma)
mik(Y, X, sizes, lambda, beta, z, sigma)
yhat(v, lambda = 1)
ytrans(y, lambda = 1)
gqz(numnodes = 20, minweight = 1e-06)
masspoint.class(object)
a formula describing the transformed response and the fixed effect model (e.g. y ~ x).
the random effects. To fit overdispersion models , set groups = 1.
a data frame containing variables used in the fixed and random effect models.
the number of mass points.
a positive scalar (usually, 0< tol <= 2)
a transformation parameter, setting lambda=1 means 'no
transformation'.
maximum number of iterations for the EM algorithm.
a small scalar, with default 0.0001, used to determine when to stop EM algorithm.
Set plot.opt=1, to plot the disparity against
iteration number. Use plot.opt=2 for tolfind.boxcox and plot.opt=3
for optim.boxcox.
If set to FALSE, no printed output on progress.
a description of the initial values to be used in the fitted model, Quantile-based version "quantile" or Gaussian Quadrature "gq" can be set.
extra arguments will be ignored.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
Amani Almohaimeed and Jochen Einbeck