##
## Grouping objects with different symbols and colors - 2d and 3d
##
dev.new(w=6, h=6)
oask <- devAskNewPage(dev.interactive(orNone=TRUE))
if (FALSE) {
# 2d
plot(bpca(iris[-5]),
var.factor=.3,
var.cex=.7,
obj.names=FALSE,
obj.cex=1.5,
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.pch=c('+', '*', '-')[unclass(iris$Species)])
# 3d static
plot(bpca(iris[-5],
d=1:3),
var.factor=.2,
var.color=c('blue', 'red'),
var.cex=1,
obj.names=FALSE,
obj.cex=1,
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.pch=c('+', '*', '-')[unclass(iris$Species)])
# 3d dynamic
plot(bpca(iris[-5],
method='hj',
d=1:3),
rgl.use=TRUE,
var.col='brown',
var.factor=.3,
var.cex=1.2,
obj.names=FALSE,
obj.cex=.8,
obj.col=c('red', 'green3', 'orange')[unclass(iris$Species)],
simple.axes=FALSE,
box=TRUE)
}
##
## New options plotting
##
plot(bpca(ontario))
# Labels for all objects
(obj.lab <- paste('g',
1:18,
sep=''))
# Giving obj.labels
plot(bpca(ontario),
obj.labels=obj.lab)
# Evaluate an object (1 is the default)
plot(bpca(ontario),
type='eo',
obj.cex=1)
plot(bpca(ontario),
type='eo',
obj.id=7,
obj.cex=1)
# Giving obj.labels
plot(bpca(ontario),
type='eo',
obj.labels=obj.lab,
obj.id=7,
obj.cex=1)
# The same as above
plot(bpca(ontario),
type='eo',
obj.labels=obj.lab,
obj.id='g7',
obj.cex=1)
# Evaluate a variable (1 is the default)
plot(bpca(ontario),
type='ev',
var.pos=2,
var.cex=1)
plot(bpca(ontario),
type='ev',
var.id='E7',
obj.labels=obj.lab,
var.pos=1,
var.cex=1)
# A complete plot
cl <- 1:3
plot(bpca(iris[-5]),
type='ev',
var.id=1,
var.fac=.3,
obj.names=FALSE,
obj.col=cl[unclass(iris$Species)])
legend('topleft',
legend=levels(iris$Species),
text.col=cl,
pch=19,
col=cl,
cex=.9,
box.lty=0)
# Compare two objects (1 and 2 are the default)
plot(bpca(ontario),
type='co')
plot(bpca(ontario),
type='co',
obj.labels=obj.lab)
plot(bpca(ontario),
type='co',
obj.labels=obj.lab,
obj.id=13:14)
plot(bpca(ontario),
type='co',
obj.labels=obj.lab,
obj.id=c('g7', 'g13'))
# Compare two variables
plot(bpca(ontario),
type='cv')
# Which won where/what
plot(bpca(ontario),
type='ww')
# Discrimitiveness vs. representativeness
plot(bpca(ontario),
type='dv')
# Means vs. stability
plot(bpca(ontario),
type='ms')
# Rank objects with ref. to the ideal variable
plot(bpca(ontario),
type='ro')
# Rank variables with ref. to the ideal object
plot(bpca(ontario),
type='rv')
if (FALSE) {
plot(bpca(iris[-5]),
type='eo',
obj.id=42,
obj.cex=1)
plot(bpca(iris[-5]),
type='ev',
var.id='Sepal.Width')
plot(bpca(iris[-5]),
type='ev',
var.id='Sepal.Width',
var.factor=.3)
}
devAskNewPage(oask)
Run the code above in your browser using DataLab