Learn R Programming

bpgmm (version 1.0.9)

Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models

Description

Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) .

Copy Link

Version

Install

install.packages('bpgmm')

Monthly Downloads

209

Version

1.0.9

License

GPL-3

Maintainer

Yaoxiang Li

Last Published

June 1st, 2022

Functions in bpgmm (1.0.9)

Hparam-class

An S4 class to represent a Hyper parameter.
pgmmRJMCMC

bpgmm Model-Based Clustering Using Baysian PGMM Carries out model-based clustering using parsimonious Gaussian mixture models. MCMC are used for parameter estimation. The RJMCMC is used for model selection.
evaluatePriorLambda

evaluatePriorLambda
MstepRJMCMCupdate

MstepRJMCMCupdate
evaluatePriorPsi

evaluatePriorPsi
stayMCMCupdate

stayMCMCupdate
ThetaYList

ThetaYList-class
getmode

getmode
getZmat

Tool for vector to matrix
CalculateProposalLambda

CalculateProposalLambda
CalculateProposalPsy

CalculateProposalPsy
generatePriorLambda

generatePriorLambda
generatePriorPsi

generatePriorPsi
VstepRJMCMCupdate

VstepRJMCMCupdate
generatePriorThetaY

PriorThetaY list
getRemovedIndThetaY

getRemovedIndThetaY
getThetaYWithEmpty

getThetaYWithEmpty
EvaluateProposalPsy

EvaluateProposalPsy
EvaluateProposalLambda

EvaluateProposalLambda
toEthetaYlist

Title
evaluatePrior

evaluate Prior
likelihood

likelihood
combineClusterPara

combineClusterPara
listToStrVec

Convert list of string to vector of string
getIndThetaY

getIndThetaY
toNEthetaYlist

toNEthetaYlist
calculateRatio

Log scale ratio calculation
changeConstraintFormat

changeConstraintFormat
updatePostThetaY

Update posterior theta Y list
calculateVarList

calculateVarList
clearCurrentThetaYlist

clearCurrentThetaYlist
sumerizeZ

sumerizeZ
summerizePgmmRJMCMC

summerizePgmmRJMCMC
updatePostZ

updatePostZ